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The Evolution of Gas and Stars

in the merger galaxy NGC 1316 (Fornax A)

G. Mackie 1 and G. Fabbiano

Harvard.Smithsonian Center for Astrophysics,

60 Garden S_ree_, Cambridge, MA 0_188

ABSTRACT

We present optical and archival X-ray data on the disturbed morphology radio ellip-
tical NGC 1316 (Fornax A) that displays numerous low surface brightness shells, loops

and tails. An extended (81x27" or 9x3 kpc) emission line region (EELR) at a projected
distance of 35 kpc from the nucleus has been discovered in a ,,,90x35 kpc, ,-,3.0x109 LB®

tidal tail. The position and extreme size of the EELR suggest it is related to the merger

process. We suggest that the ionization mechanism of the EELR is shock excitation,

and the gas is remnant from the merger progenitor. X-ray emission is detected near two
tidal tails. Hot, -,,5 x 10SK gas is probably the predominant gas component in the tidal

tail ISM. However based on the current tidal tail (cold + warm + hot) gas mass, a large
fraction of the tidal tail progenitor gas may already reside in the nucleus of NGC 1316.

The numerous and varied tidal tail system suggests that a disk-disk or disk-E merger

could have taken place > 1 Gyr ago, whilst a low mass, gas rich galaxy started to merge
-,, 0.5 Gyr ago.

Subject headings: galaxies: structure- galaxies: photometry- galaxies: peculiar-

galaxies: individual- galaxies: interactions- X-rays: galaxies

aVisiting Astronomer, Cerro Tololo Inter-Americ_u Observatory. CTIO is operated by AURA, Inc. under contract to the National
Science Foundation.
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1. Introduction

NGC 1316 (Fornax A, PKS 0320-37, Arp 154) is

one of the closest, D = 22.8 Mpc (adopting v0=1713

km s -1, Sandage and Tammann 1981, hereafter RSA,

and H0 = 75 km s-1 Mpc -1) and brightest radio

galaxies in the sky. Its catalogue morphological type

is uncertain, being described as Sa pec (merger?) in
RSA. It is located on the outskirts of the Fornax clus-

ter, and is projected 3.70 from the centrally located

cluster giant elliptical NGC 1399. Extensive opti-
cal observations of Schweizer (1980), hereafter $80,

and Schweizer (1081) show NGC 1316 (MB ",, -22.7)

possessing a surprisingly small core radius and high

central surface brightness for its luminosity. These

unusual Core properties alone may suggest a previ-

ous merger event (Kormendy 1087) has taken place.

$80 showed NGC 1316 to be a D-type galaxy with

an elliptical-like spheroid surrounded by a large enve-

lope. Photographic plate imagery shows the envelope

possessing numerous low surface brightness arcs or
shells and loops, including a large loop that extends

~25' S-SW (,,-170 kpc adopting 9"/kpc) from the

galaxy nucleus. Long-slit spectroscopy by $80 shows

a rapidly rotating (vsinl -,-350 km s -1 ) disk of ionized

gas in the centre of the galaxy with a rotation axis al-

most 90 ° from the stellar rotation axis and a single

giant H n region was discovered 6.71 S of the nucleus.

NGC 1315 also shows activity that may be related

to its dynamical history and environment. It dis-

plays low-ionization emission-line spectra in its nu-

cleus (Veron-Cetty and Veron 1986; Phillips et al.
1986), as well as a steep spectrum radio core with

dual-opposing jets (Geldzahler and Fomalont 1984).

It has a double-lobe radio continuum structure (Ekers

d al. 1983) with a diameter of ,,,35' that exists pri-

marily outside of the optical galaxy. HST FOC imag-

ing by Fabbiano et al. (1994) shows that NGC 1316

possesses a UV-bfight, unresolved nucleus. ROSAT
HRI observations of hot gaseous emission in the cen-

tral region of NGC 1316 by Kim et al. (1997) sug-
gest a hot (107K) ISM exists with Ms_ ~ 10 s Mo

and sets a 3¢_ upper limit <9x1039 erg s-1 for a nu-

clear point-like source. Shaya et al. (1996) presented
HST Planetary Camera V and I images that con-

firmed the existence of a small, 34 pc, core radius

and found a central non-isothermal luminosity pro-

file. The star cluster population appears to be quite

normal in terms of colour and luminosity, with little

sign of a young population, in contrast to other stud-

ies of merger galaxies(eg. NGC 1275, Holtzman et al.

1992; NGC 7252, Whitmore et al. 1993; NGC 4038/9,

Whitmore and Schweizer 1995).

The origin of tidal tails such as those seen in
NGC 1316 is firmly established. Toomre and Toomre

(1972) and Toomre (1977) proposed that gravita-

tional interactions between disk galaxies could form

tidal features. Further, Toomre (1977) suggested that
such disk-disk mergers could ultimately resemble el-

lipticals. Theoretical studies of equal mass disk-disk

mergers by Barnes (1992) have strengthened the case

of a merger origin for some ellipticals, whilst recent

models (Barnes and Hernquist 1996) have included
gas dynamics showing that large central concentra-

tions of gas can form in the cores of merger remnants.
Such predictions have been verified by the detection

of large amounts of molecular gas in merger galaxies
such as NGC 520 (Sanders et al. 1988), NGC 4038/9

(Stanford et al. 1990) and NGC 7252 (Dupraz et al.

1990).

Multi-wavelength observations of mergers can pro-

vide important constraints on the types of progeni-

tors, the stellar and gaseous properties of tidal fea-
tures and merger remnant and the ultimate fate of

the remnant. Hibbard d al. (1994) presented opti-

cal, radio and X-ray observations of the merger rem-

nant NGC 7252. Large amounts of H I exist in the
tidal tails, showing inflow into the merger core al-

though there is no H I in the main stellar body. X-

ray emission is detected, centred on the main stellar

body only. Computed X-ray luminosities suggest that

the emission in NGC 7252 is larger than expected for
a spiral, and lower than expected for an elliptical of

the same blue luminosity. The lack of atomic hydro-
gen in the main body of the remnant, combined with

the presence of warm ionized gas in the nucleus, and
possible hot, ~10e-TK, gas inferred from X-ray mea-

surements, suggests an efficient mechanism converts

H I into other gaseous phases. Hibbard and Mihos

(1995) made N-body simulations of NGC 7252 in or-

der to explain the H I observations. The kinematics

of the H I showed a velocity reversal along the tails

that could be successfully modelled as material in the

base of the tails falling back to smaller radii of the
merger remnant. A comprehensive H I, H II and R-

band study of five mergers (including NGC 7252) is

presented in Hibbard and van Gorkom (1996). Sev-

eral trends are evident along the merging sequence

including the presence of H I in the disks of the early

mergers, and the scarcity ofH I in the remnant bodies



of the more evolved systems. Efficient gas conversion

appears to be a fundamental property along the disk-

disk merger evolutionary sequence.

We present very deep CCD observations of NGC 1316
made with the CTIO Schmidt, and ROSAT archival

X-ray images. In this paper the discovery of an ex-

tended, emission line region, at large radii from the
nucleus of NGC 1-316, yet located within a prominent

low surface brightness tidal tail is presented. X-ray

emission is detected, possibly for the first time, asso-
ciated with two tidal tails. We shall discuss the stel-

lar and gaseous properties of the two prominent tidal

tails, the probable excitation mechanism of the ex-

tended emission line region, and the probable history

of merger events in the system. The observations are

described in _II. Reduction and analysis of the data

is given in _'III. A discussion of the results is given in

_IV.

2. Optical Observations and Data Reduction

The CCD images presented in this paper were
taken with the CTIO/University of Michigan Cur-

tis Schmidt 0.fi/0.9m telescope. The detector was

a Thomson 1024x1024 CCD. The pixel size is 19pm

square (1.835 _1)however vignetting limits the useable
field size to about 301 Multiple bias and dark im-

ages were taken. Flatfields were generated from twi-

light sky exposures each night. B band (Ac - 4324_,
FWHM=l15fi_; CTIO Harris set #2)exposures were

taken on the night of 1994 November 10/11. The

night was not photometric. Individual exposures were
900s with small shifts between successive exposures.

The total exposure time was 11,700s. Narrowband

(Ha-i-[Nn]) exposures were taken on the night of 1994
November 11/12. The night was photometric. Indi-

vidual exposures were typically 1200s with small tele-

scope shifts between exposures. Total exposure times
were 8100s each For the redshifted Ha+INn] (A 6563

+ AA 6548,6583) emission line filter (Ac -- 6606_,

FWHM=76_), and continuum filter (Ac - 6693_,

FWHM=81_). Based on the half power points of the
6606_ line filter and assuming emission centred at

6563_, the filter will be sensitive to emission over the

velocity range of 250-3?00 km s-1.

Images were bias subtracted, flatfielded, and added

after registration by centroiding on bright stars. Since

the night of 1994 November 10/11 was not photomet-

ric, B band standard star observations were not taken.
The observations were calibrated using previous aper-

ture photometry listed in Lauberts and Sadler (1984).

Twelve previous B band photoelectric measurements

with aperture diameter sizes ranging from 30.0 to
203.3 H were used to derive a zeropoint of the CCD

data with a dispersion of 0.04 mag. The spectropho-
tometric standard HZ 4 was used to calibratethe

narrow band images based on AB magnitudes (Oke

1994, priv. comm). The adopted magnitudes for

HZ 4 were ABss0s=15.01 and ABss93=14.81. The

Ha+INn] image was derivedby subtractinga scaled,

sky subtracted continuum image from the sky sub-

tractedemission lineimage. PSF widths of starsin

the on-lineand continuum images were measured and

they agreed within measuring errors.The adopted

scalingwas calculatedfrom a linearleastsquare fitto

residualsof25 fieldstarscalculatedfrom severalscal-

ing factors.Mean pixelvaluesof the finalHa+[Nll]

image at largeradiifrom the nucleuswere consistent

with zero. The Hcr+[Nn] image was smoothed with

a Ganssian filterof 0"= 3 pixels.A B-6693A colour

map was constructedfrom the B and narrowband red

continuum filter(Ac = 6693_, FWHM=81]k) image.

PSF widths ofstarswere matched viaslightsmooth-

ing, and images were registeredvia centroidingon

brightstars.

3. Analysis

3.1. B band images and NGC 1316 model

Figure 1 shows the NGC 1316 B band median fil-

tered (stacked) image produced from 13 900s indi-

vidual images. The galaxy --,6.41 N of NGC 1316 is

NGC 1317 (v0=1893 km s -1 from RSA) that appears

very regular, with no sign of structural disturbance.

Figure 1 clearly shows the shells, ridges and loops of

material at large radii. A prominent tidal tail origi-

nates SW of the main body of NGC 1316, then ex-

tends to the NW, ending in a straight feature. This

is LI denoted by $80 (see also the sketch map, Figure

2 of $80). A second prominent tail, E of the nucleus,

was denoted L2. Other ripple features closer to the

nucleus and fainter loops (Ls and L4 in $80, N and

SW of L2 respectively) are seen. In this paper we will
concentrate on the two most prominent tails, L1 and

L2.

This median image shows that the NW portion of

L1 is relatively narrow and quite straight, extend-

ing SE-NW. Progressing towards the SE, the loop
then bends toward a P.A. of-,,900and becomes much

wider. The faintlightmorphology suggeststhat this



sectionofLI isa distinctplateaufrom the main body

of NGC 1316. L_ isstructurallymore simple than

LI, and appears as a loop of material curving into

the centralregionofNGC 1316. To isolateLz and L_

from the envelopeofNGC 1316,an isophotalmodel of

NGC 1316 was made using IRAF 2 ellipseand bmodel
tasks. Features such as NGC 1317 and the nuclear

dust lanewere masked from the fit.As well,clipping

ofthe highest 10% ofpixelsin each isophotalfitwas

implemented to ignorefaintlightfeaturessuch as the

loops and shellsthemselves and any faintstarsand

galaxiesthat remained undetected by eye. The el-

lipticalmodel extended to just outside the furthest

extent of LI and L2. The accuracy of the model is

poor within 1'of the nucleusdue to the existenceof

the nucleardust lane,however thisdoes not effectthe

modelling near the tidaltails.The images displayed

very good fieldflatteningwith small errorsinthe sky

values(+0.4%) acrossthe image.

Figure 2 shows the B band residuallightderived

from the median image (Figure I) after isophotal

model subtraction.This image clearlyshows the com-

plexityof low lightfeaturesin the outer envelope of

NGC 1316. The projected sizeof LI is_.90x35 kpc

and the broadening of L1 in the $E and its "plateau"

nature as suggested by Figure 1 is confirmed. Its

southern edge is quite sharp, although the main SE-
NW component of L1 can not be mistaken for a shell

due to its extreme width and nearly uniform bright-

heSS. The apparent width of L1 may be a projection

effect, since tidal tails are usually flattened systems

(Toomre and Toomre 1972). The majority of L1 spans

less than two magnitudes in surface brightness (25-27

B mag. arcsec-:). L2 is slightly shorter in projected
size and much more loop-like than L1, and shows a

small variation in surface brightness (brighter at its S

edge) yet is fainter overall than LI.

The white (deficit) region in the nucleus of length
2 ' at a P.A. of --160 ° is the nuclear dust lane. Several

extended, clumpy residual regions are seen within 2-

3' (NE, NW and SW) of the nucleus, as well as many

shells. These regions are not artifacts of the isophotal

model subtraction. The residual region to the NW at
a P.A. of-40 ° contains the plume 'P' noted by $80

and subsequently suggested by Graham (1987) as a
region of blue stars. The sketch map of Figure 2 in

ZIRAF is distributed by the National Optical Astronomy Obser-

vatories, which is operated by the Association of Universities

for Research in Astronomy, Inc. (AURA) under cooperative

agreement with the National Science Foundation.

$80 suggeststhat L2 joinsthisplume region,however

italsoseems possiblethat L_ ends more abruptly in

another residualregion,NE of the nucleus,at a P.A.

of35°.A thirdresidualregion,2.5_SW ofthe nucleus

could be associatedwith LI. Overlayed on Figure 2

are linesshowing the axisofstellarrotationatP.A. =

1400 as determined by Bosma e_ al. i1985) and the

directionof the two outer radio lobes (Ekers et al.

1983) at P.A. = 110°.

Tests showed that the parameters used to exclude

extraneous faintfeaturesin the isophotalmodelling

were more important than flatfieldingerrorswhen

determining the errorsin the residuallightcompo-

nents. By varying the amount of pixel clippingin

each isophote(from our adopted 10%) and constrain-

ing the residualpixelvalue to be zero at largedis-

tancesfrom the tidalfeatures,we estimate our errors

in the residuallightofLI and L_ to be q-30%. To es-

timate the stellarluminosityof LI the residuallight

was summed, aftercarefulexclusionof bright (fore-

ground) stars.An aperture of 90 x 37 kpc was used.

An LB (LI)= 3.1xi0s LB® or 2.2% ofLB (NGC 1316)

isfound. We have done a similaranalysisto deter-

mine the opticalluminosity of L2. A 31 x 18 kpc

aperture was used and LB (L_) - 2.6x10_ LBO was

derived.Profilefitsto the broadband surfacebright-

hess (excludingthe loops and ripples)of NGC 1316

support the findingsin$80 that NGC 1316 followsan

rl/4-1awvery closely,suggestingthat the main stellar

body has relaxedto an equilibriumconfiguration.If

LI and L_ were formed by major merger events,with

originalluminositieswell in excessof our calculated

valuesabove, our isophotalmodel could be overesti-

mating the spheroidallight.This problem isinher-

ent to any evolvedmerger system. Later resultsand

discussionwillhowever propose that the LI tidalsys-

tem isprobably a recentmerger event,and therefore

the derivedluminosityisrepresentativeofthe original
pre-merger value.

3.2. The discovery and properties of the EELR

Figure 3 shows NGC 1316 with Ha+[NII] emission

in greyscale overlayed with B band (total) contours of

23, 24, 25 and 26 mag. arcsec -2. The newly discov-

ered extended emission line region is labelled EELR,

the giant H II region (2.6 _ SE of the EELR) found
in $80 is labelled SH2, and LI is also denoted. The
positions of the EELR and SH2 relative to NGC 1316

are given in Table 1. The nuclear gas disk is seen, as
is Ha+[NII] associated with NGC 1317. The EELR



issituated~5.3' (35 kpc projected distance) SW of
the nucleus of NGC 1316 and is located in the pre-

viously described plateau region of L1. Comparison

with the Figure 2 sketch map of $80 shows that the

EELR is near a major dust lane. Inspection of the

B hand residual image shows strong extinction in the
vicinity of the EELR that is structurally similar to

the EELR. The position angle of the EELR, -_45 n,

is almost perpendicular to the predominant direction

(SE-NW) of L1. Very faint Ha+[NII] is also seen be-
tween the nuclear gas disk and NGC 1317, yet none
is seen near L_.

The SW quadrant of NGC 1316 is shown in Figure

4. Contours show H_+[Nu] emission, whilst greyscale

depicts B band residual light (summed B image-

isophotal model), clearly showing the intensity and
structure of L1. Several bright foreground stars are

also seen in projection in L1. The position of the

EELR is at the central E edge of L1. Interestingly,

SH2 may be located in L1 as well. There are no other

bright, extended Hc_+[Nn] regions in L1. The asso-
ciation between L1 and the B band residual region,

2.5 _ SW of the nucleus is shown more clearly, and

suggests that it could be part of L1. After excluding

a foreground star,this region has a similarsurface

brightnessto the main part of LI. The other resid-

ual B band regions(NE and NW of the nucleus) are

shown, as well as smaller(than the EELR) H,_+[NII]

regions2 'N of the nucleargas disk and extending to

the W. A close-upview of the EELR isgivenin Fig-

ure 5. The greyscaledepictsHa+[Nu] emission,and

contour levelsat 2.0 and 4.0 xl0 -I_ erg cm -2 s-I

arcsec-_ are also shown. A disturbed morphology

issuggested,with itslong axis extending along the

NF_,-SW direction.The sizeof the ionizedgas region

is81x27" or 9x3 kpc. Central concentrationsare ev-

ident along the major axisofthe EELR and close-by,

faintblobs of emission are alsoseen. The integrated

flux of the EELR, fHa+[NIX] is 8-lxI0-14 erg cm -2
S--1.

3.3. The hot gas environment near L1, L: and
the EELR

A ROSA T Position Sensitive Proportional Counter

(PSPC; Pfeffermann et a/. 1987) image of NGC 1316

(FWHM ~ 25 ") was extracted from the U.S. ROSAT
data archive. This data has been previously used in a

study of the X-ray emission associated with the outer

radio lobes by Feigelson cfal. (1995) who showed

that the emission, predominantly beyond the field of

view of our images, (see theirFigure 2) can be ex-

plainedby Inverse-Compton scattering.The totalex-

posure time was 25.5 ksec. Figure 6 shows contours

ofPSPC Broadband (0.1-2.4keV) emission at3,5,10

and 20_ above background overlayed on the B band

residualimage, shown ingreyscale.The PSPC data

was binned to a pixelsizeof 15" (approximately half

of the PSPC FWHM; the PSPC instrumental pixel

sizeis0.5") and smoothed with a Gaussian filterof

cr= 2 pixels.The emission isdominated by X-rays

from the main body ofNGC 1316,however the X-ray

emission at largeradiiisquitecomplex.

There issubstantialX-ray emission cospatialwith

the higher surface brightness regions of LI. The

EELR ispositioned (seearrow in Figure 6) on the

N edge of thisX-ray emission that extends S then W

of NGC 1316. Other X-ray emission, that iscospa-

tialwith partsofL_ (excludingthe emission probably

originatingfrom the brightstarSE ofthe main region)

isseen. A thirdregionof emission extends NW from

NGC 1316,where thereislittleor no residualB band

lightat largeradii.The X-ray emission that extends

N from NGC 1316 overlapswith NGC 1317. There is

no evidence ofX-ray emission near the other loops or

tailsinthe system.

An analysisofthe PSPC data within 3'of the nu-

chus (not includingthe emission near LI or L_) has

been done by Kim etal.(1997).The X-ray spectrum

isconsistentwith hot gaseous emission,with an Lx ~

2 x 1041erg s-I (forthe Kim e_al.1997 adopted dis-

tance of 27.2 Mpc), and a possiblehard component

that could be due to low-mass binaries,contribut-

ing 20-30% of the flux.We concentrateon the X-ray

emissionatintermediateradiithat has not been stud-

ied.The good correspondence ofX-ray emission with

both LI and L2 tidaltailssuggests a physicalasso-

ciation.The originof the emission could be binary

sourcesand SNR inthe tailsand/or hot gas resulting

from the merger processor from the evolutionofthe

ISM in the tails.To investigatethe originof the X-

ray emission,PSPC spectrahave been extracted from

the tidaltailregions(forthe aperturesused see Table

2). The background was taken wellaway from source

emission (N. of NGC 1317), and vignettingcorrec-

tionswere appliedto the data. The totalPSPC spec-

traicounts were 712-4-71and 280±47 for the LI and

L2 regionsrespectively.Given the limitedstatistics

ofthe data forthe L2 region,we concentrateon find-

ing acceptableXSPEC spectralfitsfor the LI region

emission.Table 2 summarizes our spectralfittingre-



suits.

We find that a single component Raymond and

Smith (Raymond and Smith 1977; R-S hereafter)
gaseous thermal model yields kT "- 0.55 keV (with

XSPEC 90% limits of 0.40-0.83 keV for 3 interesting

parameters), N_ = 2.3 (1.2-3.5) x 1020 cm -2, (consis-
tent with the line of sight Nx = 2 x 102o cm-2; Fab-

biano et al. 1992i, and a very low metal abundance

of 5.8 x 10 -3 (0 - 4.1 x 10 -_) of solar. The fit returns

a X2 of 17.5 for 25 degrees of freedom (d.o.f.). A sta-

tistically similar fit to the spectra can be achieved

by using a single component Bremsstrahlung model.
This model could represent a population of discrete

X-ray sources (ie. binaries) in the tidal tails. The

fit yields kT - 0.54(0.39-0.80; for 2 interesting pa-

rameters) keV, Nx = 2.7(1.7-3.8)x 10_° cm -_ (again
consistent with the line of sight value), and a X 2 of

19.2 for 26 d.o.f. Both single component models re-

turn similar X-ray luminosities (see Table 2) of --,2 x

1040 erg s -1. Other model fits have been attempted

although none are as good as the single model fits

above. An R-S model with fixed line of sight absorp-
tion and solar abundance returns an unacceptable X2

of 67.3 for 28 d.o.f. A combined R-S (solar abun-

dance) and Bremsstrahlung (kT = 5 keV; a temper-

ature typically used to describe a hard X-ray binary

component) model with fixed line of sight absorption,

gives a soft R-S temperature of 0.16 keV and returns
a )C2 of 27.9 for 28 d.o.f.

The range of kT suggested by the single model fits

(see Table 2) shows that the X-ray emission of L1 is

significantly softer than that expected from a popula-

tion of evolved stellar sources (see Fabbiano 1989 and
refs. therein) suggesting the emission is from a hot

ISM. This is not surprising since the expected emis-

sion from a population of binary X-ray sources is Lx

~6 x 10ss erg s -1 in L1 (using the average Lx-LB

relation of spirals in Fabbiano d al. 1992), which is
a factor _,10 less than the above calculated luminosi-

ties. We adopt an area of 45 x 35 kpc (consistent with

the area of X-ray emission in L1) and a depth of 5 kpc,

which assumes that the hot gas is coexistent with the

tidal tail, and that the tail is seen face-on, consis-

tent with most tails being flat or ribbon-like (Toomre
and Toomre 1972). We adopt the cooling function of

Wang and Hdfand (1991) used for the LMC and a

hot gas Lx -_2 x 1040 erg s-1 to derive an electron

density of he "-"2.4 x 10 -3 T/-1/2 cm -3, where _ is the

gas volume filling factor. The mass of hot, ,_5 x 10SK

gas in L1 is then ,,- 5 x l0 s 17-l/_ M®. Uncertainties in

the volume would suggest an error of 2-3 could exist

in our mass estimate. The implied shock velocity for

this temperature of gas is -,,380 km s -1 , much higher
than observed for the H I infall velocity at the base of

the tidal tails in NGC 7252 (Hibbard d al. 1994).

4. Discussion

4.1. Stellar and gaseous content of L1 and L2:

Clues to the nature of the progenitors

We can attempt to derive the stellar and gas con-
tents of the Li progenitor based on the properties of
the L1 tidal tail. We have determined that the lumi-

nosity of L1 is 3.1x109 LB® with an error of ±30%.
There is no evidence of recent star formation due to

passage through NGC 1316 (see Section 4.2 for a dis-

cussion about the global colour of L1). The structural

characteristics of L1 (plateau, ridges or ripples and

the sharp southern edge), imply that the progenitor
was a dynamically "colder" galaxy than NGC 1316

(Quinn and Hernquist 1987). For the following dis-
cussion we shall assume that the derived luminosity of

L1 is representative of the total luminosity of its pro-

genitor galaxy. Arguments given later in this section
and in section 4.3 will propose that L1 is substan-

tially different structurally and in gas content from
the other tidal tails that are more likely to be indica-

tive of a major disk-disk or disk-E merger.

We can estimate an original H 1mass for an L1 pro-

genitor based on the gas fraction estimates of spirals.

Adopting the H I estimates in Table IV of Haynes

and Giovanelli (1984) and allowing the possible mor-

phological types of the L1 progenitor to range from

Sa-Sab through Scd-Sd, would suggest an initial H

I mass ranging from 8.Tx10S-2.Sx109 M®. This gas
mass is substantially more than that detected in ob-

servations. Early searches for H ] gave upper limits

only for NGC 1316. Reif d al. (1982) list an up-

per limit of 4.5 Sy km s -1, whilst Jenkins (1983) de-
rives a similar (to Rail et al. 1982) H I mass limit of

<2x10 s M®. A VLA H x observation (van Gorkhom

1996 priv. comm.) detects several 107 Mo of H I

near SH2 but only an upper limit of ,,,lxl0 r M o for
the region near the EELR. We can also estimate the
amount of H I that could be associated with the dust

lane near the EELR. We assume a Galactic gas-to-

dust ratio of M_/Mdust = 100, and NA - 5.8 x 1021
EB-V atoms cm -2 (Bohlin et al. 1078). AB is mea-

sured directly from our B band image and isophotal

model, whilst we assume the dust is optically thick



across 5.9x107 pc _. We adopt an RB --4.10 (Goud-
frooij e_ al. 1994b) and derive Mm - 1.1xl0 s M®,

that is substantially larger than the upper limit found
near the EELR, but still less than the gas mass pre-
dicted from a spiral progenitor.

We determine the ionized gas content of the EELR.
We derive L(H_ ) - 8.2x105 LO or 3.2x10 s9 erg s-i
which is is a favor of ~10 less than the expected

L(H_ ) for a 3.1x109 LBO late-type spiral based on the
L(Ha )-IB regression fits of Trinchieri e_ al. (1989).
We then convert this L(Ha ) to a mass, and determine
Mml - 7.5x10 s M®. A summary of the EELR dust
and gas properties is given in Table 3. Therefore,
based on a late-type spiral progenitor for L1 the H
n content could be diminished by a factor of ~10,
and the H I content, allowing for the range of spiral
types, may be diminished by ~30-100. As discussed in
Section 3.3, ~5 x l0 s Mo of hot, 6 x 10eK, gas could
also exist near LI. This could be the first detection

of hot gas associated with tidal tails. The presence
of a hot ISM may suggest heating by strong shocks
(consistent with a merger velocity of a few hundred
km s-i). This hot gas may shock heat any cold gas
that is falling into the central regions, and can at
least partially explain the dearth of H I. We estimate
a cooling time, rc ~1 x 109 171/2yrs, which is larger

than our estimated merger lifetime (see Section 4.2)
of 0.5 Gyr. The amount of total ISM is in excess
of that expected from the outgassing of an evolving
stellar population (Faber and Gallagher 1976) over
the lifetime of the merger. We assume that the stellar

population in the tidal tail is similar to early-type
galaxies as assumed in Faber and Gallagher (1976),
which is supported by the smooth optical stucture in
the tail and the elliptical-like colour (see Section 4.2)
across the majority of L1. We derive an outgassed
mass of ~3 x 10T Mo based on the estimated LB of
L1 and a 0.5 Gyr lifetime, being the estimated time
since the start of'the merger encounter. Hence the
bulk of the observed gas must be from the pre-merger
progenitor.

The existenceof a hot ISM ina tidaltailisan

importantdiscovery.Other tidaltailsystemsdo

not show X-ray emissionsuggestinga low or non-

existenthot gas content.The PSPC observationof

NGC 4038/9 (Read e_ al. 1995) detects emission
related to the two interacting disks that can be ex-
plained by almost equal amounts of discrete source
and diffuse emission originating from -_4 x 106K gas.
The Hibbard et al. (1994) PSPC observation of

NGC 7252showsemissioncentredon themergerrem-

nant body only.Our observationsshow thatin L1

(and possiblyL_) a hot gasphase existsthatissep-
arateto thecentralhotgas associatedwiththemain

stellarbody. The shock velocityneededto produce

the _5 x 106K gas in L1, ~380 km s-1, suggests a
rapid interaction velocity well in excess of the gas in-
fail velocities in NGC 7252 and may help explain the
paucity of H I. We suggest that the extreme size (9 x
3 kpc) of the EELR, the large hot gas content and the
extensive and unusual tail morphology (similar to low
mass merger models of Hernqnist and Quinn 1989) of
L1 support it being the ,_0.5 Gyr old remnant of a
low mass, gas rich disk galaxy.

The L2 tail is fainter and much smoother than L1

although the S section has a slightly higher surface
brightness than the rest of the tail. We do not de-
tect any H II emission nor is any H I detected. If
the X-ray content in L_ is similar to that in L1, and
adopting a gas volume of 30 kpc x 15 kpc x 5 kpc, by
simple scaling of the ratio of PSPC counts, L2 may
contain ,,,1 x 10s M® of hot gas (see Table 4 for a
summary). The smooth structural appearance may
suggest a progenitor that is dynamically hotter than
the L1 progenitor. We suggest that L2 is not necessar-
ily associated with the event that formed L1 but could
be related to a previous disk-disk or disk-E merger.
The likely merger history and tidal tail progenitors
will be discussed further in Section 4.3.

4.2. The probable ionization mechanism of
the EELR

The largesize,9kpc x 3 kpc (afactor--5largerin

surfaceareathan SH2) and special(projected)po-

sitionof the EELR in the high surfacebrightness

regionof LI, arguesagainstitsimplybeinga giant
H H region,and connectsitsexistencewith the LI

merger event. Theoreticalsimulationsof low mass

mergers(Weiland Hernquist1993)show thatstellar

and gaseous(T=104K) componentsrapidlysegregate

with the gas flowingquicklyintothenucleusof the

primary galaxywhilstthe stellartidaltailevolves.

As an example,one model simulation,Figures2, 3

and 6 ofWelland Hernquist(1993),shows thatby a

timestepof60 units,a substantialamount ofmerger

gas has reachedthe centralregionsof the primary

galaxy,whilstthestellarmergercomponent continues
todisplaylowsurfacebrightnessshellsand loopsout

toa timestepof200units.Hence atleastinthiscase

itispossiblethata largefractionofthe gas rapidly



segregates from its stellar body within 30% of the to-
tal time that such stellar merger signatures (shells,

loops, tails) are visible.

The stellar light extent of L1 would suggest it is

substantially dynamically evolved. We derive an age
estimate of L1 of ~5x10 s yrs based on the low mass

merger models of Hernquist and Quinn (1988) and

Bemquist and Quinn (1980). We compute our age
estimate via Equation 2.1 of Hernquist and Quinn

(1988), inputting mass estimates for NGC 1316 and
the L1 progenitor, and then comparing the timescale

of appearance of similar model structures to that seen

in L1. The error in this age estimate is probably a fac-

tor of 2, given the uncertainties of the geometry of the

encounter and the long lifetime of the fine structures.

If our age estimate is correct then the evolved nature
of the stellar component of L1 should favour a scenario

in which the majority of progenitor gas already resides
in the nucleus of NGC 1316. Whilst we detect a sub-

stantial amount of warm (the EELR) and hot gas, it

is possible that the present warm and H ! gas content

is a factor _10 and ._30-100 smaller (see Section 4.1)
respectively than their original values. CO observa-

tions of NGC 1316 by Sage and Galletta (1993) detect

~l x 109 Mo of H2 that is coextensive with dust in

the central ionized gas disk. Velocities suggest that

the ionized and molecular gas are corotating, and the

observations support an external origin for the warm

gas and H_. Therefore it is possible that a large frac-

tion of the incoming galaxies original gas has settled

into the nucleus of NGC 1316, in agreement with the

rapid segregation predictions of Well and Hernquist

(1993).

There is no indication of a concentrated, stellar

remnant within L1. Inspection of the B-6693._, colour

map shows that the predominan_ colour of L1 is sim-
ilar to non-disturbed areas of NGC 1316 at similar

radii. Small blue regions are seen but do not dom-

inate the Li colour. Hence there appears to be no

compelling evidence for a present epoch, high star

formation rate. The argument for photoionisation of

the EELR by young stars or hot old starsappears

weak due to the lack of any unusual colournear the

EELR. Based on the above, and the existenceof the

nearby structurallysimilardust lane,we suggestthat

the most probable ionizationmechanism ofthe EELR

isshock excitationofremnant coldgas ofthe LI pro-

genitor. Spectroscopicobservationsare required to
determine thisconclusivelyand establishitsdynami-

cal properties.

4.3. A merger (or more?) in progress

The complicated structure of NGC 1316 hinders

an accuratereconstructionofitsmerger history.The

small amount ofH Idoes not allow a dynamical study

to be done as in Hibbard and Mihos (1995) for the

tidaltailsin NGC 7252, and hampers attempts to

predictthe merger progenitor types. $80 proposed

the infallof severalgas-richgalaxies over the past

,,,2x109yrs to explain the system. Similaritiesbe-

tween numerical models and observed systems ofdisk-

disk mergers and some features of NGC 1316 also

suggest that it could be an old remnant of a major

disk-diskmerger. It isalso possiblethat both pro-

cessesare occurring.In the case ofa major disk-disk

merger the lack of well definedbright tidaltailsat

largeradii(eg.asseen inNGC 7252,Schweizer 1982;

NGC 4038/9, Toomre and Toomre 1972)and the lack

of H Iin the tidaltailswould support itbeing a sub-

stantiallyevolved merger system. The centralsur-

face brightnessprofile(excluding the loops and rip-

ples)of NGC 1316 was found to followan rl/4-1aw

very closely,hence the main stellarbody has relaxed

to an equilibrium configuration. This again supports

an evolved system. The existence of nuclear It2 and

warm gas and a central hot (107K) ISM (Kim el aI.

1997) and a possible mass of _-6 x l0 s M o of ~5 x
10SK gas associated with two tidal tails would support
an efficient and evolved conversion of H I into other

phases as seen in other merger systems (Hibbard and

van Gorkom 1996).

The very faint ($80 estimates 27-28 mag. arcsec -_

in B) loop of stellar material (denoted Ls in $80) that

extends 25 _ S-SW of the galaxy (outside our CCD

field of view but shown in Figure 9 in S80) and the

shorter length loop L2 that are opposing, may be as-

sociated with one merger event. Whilst two equal
length tails are typically associated with the classical

picture of a disk-disk merger (Toomre and Toomre

1972), it is possible (Balcells 1997) to produce two dif-

ferent length and surface brightness tails (ie. L2 and

Ls) by the merger of a single spiral with a pre-existing

elliptical given a special impact trajectory. However,
without such special impact parameters, the narrow-

ness of the L_ and Ls features is hard to explain by

an interaction with a dynamically hot elliptical that

should typically produce broad features. L2 has no

detectable H I or H n which argues for it to be sub-
stantially evolved, whilst the gaseous content of Ls

is unknown although $80 does describe variations in

its structure that may suggest associations of young



stars. Shorter tails can also be produced via a bulge-

dominated progenitor, which is also consistent with
the low cold and warm gas content in L_.

The properties of L1 suggest that it is a singular

merger event. The structure of the tidal tail is re-
markably similar to structures produced in the low

mass merger models of Hernquist and Quinn (1989).

The existence of_ 9 x 3 kpc, ,-,104 M® of-,, 104K gas

(the EELR) is unusual in a tidal tail. The position of
the EELR in the highest surface brightness region of

L1 and its disk-like shape suggest that it could be the

remnant of a cold gaseous disk. The gas content and

optical structure and brightness range of L1 are very
different to both L2 and Ls again suggesting different

origins. Could L1 be related to a previous disk-disk
or disk-E merger event? Schweizer and Seltzer (1992)

have suggested that delayed splashbacks of material

can occur for several Gyr after an initial merger event.

A splashback event would probably show extensive,

disturbed stellar light (and possibly cold and warm

gas) at large radii which is not seen. The centrally
located position of the EELR, and the clean, com-

pact stellar structure of L1 argues against it being a

splashback event. The broader shape of L1 to that

of L2 and Ls should argue for a merger event with

an evolved, hot system. We believe the observational

evidence support L1 being a ~0.5 Gyr old remnant of

a gas rich galaxy on a high velocity encounter with
the halo of NGC 1316.

The varied and numerous fine structures and gaseous

properties of NGC 1316 may also be consistent with

separate merger events. However, a recent study sug-

gests that a major disk-disk merger can produce fine
structure features that have been previously associ-

ated with low mass mergers. Balcells(1997) has ob-

served NGC 3656 and findstwo, low surfacebright-

ness t_ils,and arguesfora major disk-diskmerger ori-

gin ofshellsand a minor axisdust lane.In NGC 3656

however, the tidaltailsare similarin brightnessand

extent,and are very differentto the complex and nu-

merous tidaltailsystem ofNGC 13i6. The NGC 1316

tidaltailsystem comprises 5 tailsor loops ofvarying

morphology, which argues for more than one merger

event. The existenceof nuclearmolecular gas and

a warm gas disk,and specialnuclear(smallcore ra-

• dius,high surfacebrightness)propertiesalsosuggest

that earliermerger events may have taken place be-

fore the LI event began. The locationof NGC 1316

in a duster may alsoprovideopportunitiesfor multi-

ple mergers. Adopting a mean expansion velocityof

200 km s-I for the Ls tailinfersa timescaleof ~I

Gyr. This issimilarto the timescalesof the merger

remnants NGC 7252 and NGC 3921 (Schweizerand

Seitzer1992). The faintnessand low H I contentsof

L2 and Ls tailscompared to the tailsof NGC 7252

and NGC 3921 may imply an even longertimescale

for a disk-diskor disk-E merger. In contrast,using

the same encounter velocityfor the LI tail,a _-5 x

l0s yr dynamical age is derived which agrees with

our previousage estimate for Lz based on the models

ofHernquist and Quinn (1988).Ifthe shock velocity,

_380 km s-i, inferredfrom the hot gas temperature

ofthe LI regionisrepresentativeofthe encounter ve-

locitythen the above estimate ofthe LI age may even

be too large,by a factorof,_2.Hence, whilsta signif-

icantamount ofmass in NGC 1316 could have been

depositedby an earlydisk-diskor disk-Emerger, op-

ticaland X-ray observationspresented here suggest

that a recent,ongoing low mass, gas richgalaxy is

stillin the processofmerging.
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TABLE 1

COORDINATES AND OFFSETS OF FEATURES.

R.A. Dec. A R.A. A Dec.

(1950) (1950) (") (,,)

NGC 1316" 03 20 47.2 -37 23 08

EELR 148W 271S

SIt2 44W 380S

aThe position of NGC 1316 is that given for the bright optical core in Schweizer (1981). All other positions are
relative offsets from the optical nucleus based on the CTIO Schmidt CCD images.
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TABLE 3

ESTIMATEDAND MEASURED MASSES OF THE EELR.

Mars Amount

Mtm l.lxl0sM®

M_m <lxl07 M®

Mml 7.5xi0s M®

Mtm estimated from
observed dust
extinction and assumes

Mg_,/M_,,,t = 100.

M_] is upper limit
from observation.

MHIIassumesa 33%
con-

tribution to fRa+[NH]
from [NIx] (based on
14 spirals, mainly Sc's;
Kennicutt 1983), and
L(Ha) = 2.96 x 1016
fHo D(Mpc) 2 L®, and
MHT! = 2.33x 103 (

L(Ha) 10scm -s
105gerg.-' ) ( n.
) M® (Osterbrock
1974, Case B recombi-
nation theory; Goud-
frooij et al. 1994a),
n, ----I0a cm -s (assum-

ingan electrontemper-

atureof~104K).

12



TASLE 4

OPTICAL LUMINOSITIESAND ESTIMATEDHOT GAS MASSESOF L_ AND L2.

La L2

L_ 3.1xlO_ -+30% L_ o 2.6x10 _ -I.-30%LB®

Mx,g., "*5 x lOs Me --1 x 10s M®

Mx,l,,, for L2 is estimated assuming a similar X-ray
content to L1 and a gas volume of 30 x 15 x 5 kpc.
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Fig. 1.-- B band image of NGC 1316. NGC 1317 is
6.4' N of NGC 1316. Schweizers (1980) L1 loop is W
and SW of NGC 1316 and L2 loop is E of NGC 1316.

Fig.2.--B band residualimage ofNGC 1316.Loops
LI and L_ aredenoted.The axisofstellarrotation

and thedirection-of the outerradiolobesare indi-
cated.

Fig.3.--A Ha+IN Illimage ofNGC 1316and en-

vironment(greyscMe)overlayedwithB band surface

brightnesscontoursof23,24,25and 26mag. axcsec-2.
The EELR, SH2 and LI areindicated.

Fig.4.--SW quadrantofNGC 1316.B bandresidual

shown as greyscale.OverlayedisHc_+[N II]shown
in solidcontours(2.0and 4.0xi0-17 erg cm -_ s-I
arcsec -2 ).

Fig.5.--A subimageof Figure3 showingtheEELR
in Ha-i-[NIll(greyscale).Overlayedare Ha+[N Ill

contoursatfluxlevelsof2.0and 4.0x10-Ivergcm -_
S-1 arCSeC--2 .

Fig.6.--B band residuallight(greyscale),overlayed

withROSAT PSPC Broadband (0.1-2.4keV) 3,5,
10and 20 _ contours.The arrowshows theposition
oftheEELR.
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Abstract

We have observedNGC 1316 (Fornax A) with the ROSAT HRI. In this paper, we

present the results of these observations and we complement them with the spectral analysis

of the archival PSPC data. The spectral properties suggest the presence of a significant

component of thermal X-ray emission (> 60%), amounting to _-, 109M® of hot ISM. Within

3' from the nucleus of NGC 1316, the HRI X-ray surface brightness falls as r -2. In the

inner ,,_40", the X-ray surface brightness is significantly elongated (e --_ 0.3). This flattened

X-ray feature is confirmed by a straightforward statistics test as well as moment analysis.

By comparing the morphology of the X-ray emission with the distribution of optical dust

patches, we find that the X-ray emission is significantly reduced at the locations where the

dust patches are more pronounced, indicating that at least some of the X-ray photons are

absorbed by the cold ISM. We also compare the distribution of the hot and cold ISM with

that of the ionized gas, using recently obtained Ha CCD data. We find that the ionized gas

is distributed roughly along the dust patches and follows the large scale X-ray distribution

at r > 1' from the nucleus. However, there is no one-to-one correspondence between ionized

gas and hot gas. Both morphological relations and kinematics suggest different origins for

hot and cold ISM. The radio jets in projection appear to pass perpendicularly through the

central X-ray ellipsoid. Comparison of thermal and radio pressures suggests that the radio

jets are confined by the surrounding hot gaseous medium.
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1. INTRODUCTION

NGC 1316 (Fornax A, Arp 154) is a giant elliptical galaxy in the poor Fornax duster.

This galaxy exhibits many unusual features for an elliptical galaxy, including pronounced

dust patches, H_ filaments, ripples and loops (e.g., Arp 1966; Schweizer 1980; Carter et

al. 1983; Maclde and Fabbiano 1997). The distribution of the optical surface brightness

reveals an extensive envelope, making NGC 1316 a typical D (or cD) galaxy (Schweizer

1980). It has one of the most pronounced shell systems observed in early type galaxies

(Malin and Carter 1983). These features all point to a recent merging in NGC 1316 (e.g.,

Schweizer 1980).

In the radio (0.03 - 5 GHz), Fornax A is one of the brightest objects in the sky (L =

2 x 104_ erg sec-1; Ekers et al. 1983). It contains giant radio lobes (Wade 1961), separated

by ,-,30' (--,240 kpc), consisting of polarized, organized filaments (Fomalont et al. 1989). A

faint bridge between the lobes is displaced to the south of the galaxy center and S-shaped

nuclear radio jets are present, implying a significantly violent action in the galaxy history,

as also suggested by the optical data (e.g., Ekers et al. 1983; Geldzahler and Fomalont

1984). The nucleus of NGC 1316 hosts a low-luminosity AGN: optically it has a LINER-

type spectrum (Veron-Cetti and Veron 1986; Baum, Heckman and van Breugel 1992); it

contains a radio core (Geldzahler and Fomalont 1984); and HST observations have revealed

a nuclear UV-bright point source (Fabbiano, Fassnacht and Trinchieri 1994b). NGC 1316

also contains complex, multiphase ISM: it has been detected in optical emission lines from

ionized gas (e.g., Schweizer 1980; Phillips et al. 1986; Veron-Cetti and Veron 1986), IRAS

far infrared emission (Knapp et al. 1989) and CO lines of molecular gas (Wildind and

Henkel 1989; Sage and Galletta 1993).

In X-rays, NGC 1316 was detected with Einstein (Fabbiano, Khn and Trinchieri 1992)

and belongs to a group with the lowest Lx/LB ratio among E and S0 galaxies (Kim,

Fabbiano and Trinchieri 1992b). Therefore, based on the global amount of X-ray emission,

NGC 1316 does not necessarily contain a large amount of hot ISM (see Fabbiano, Gioia and

Trinchieri 1988). In this, it is similar to other galaxies which may have experienced recent

mergers (Hibbard et al. 1994; Fabbiano and Schweizer 1995). ROSAT PSPC (Feigelson

et al. 1995) and ASCA observations (Kaneda et al. 1995) have revealed the presence of

extended Inverse Compton X-ray emission at the locations of radio lobes.

In this paper, we discuss the results of a re-analysis of the archival ROSAT (Truemper

1983) PSPC observation of NGC 1316, and we report for the first time the results of high



resolution X-ray observation with the ROSAT HRI. The HRI has -,_5 arcsec resolution

(David et at 1993), comparable to that of ground-based radio and optical data. With

these data we establish the presence of a hot ISM in NGC 1316 and we correlate its

properties to that of the other phases of the ISM. We also explore possible interactions

between tt_i-s hot ISM and the active radio nucleus.

This paper is structured as follows: in section 2, we present the results of the ROSAT

HRI (§2.1 and §2.2) and the ROSAT PSPC data analysis (§2.3); in section 3, we com-

pare the X-ray data with the optical and radio data; finally, in section 4 we discuss the

implications of our results.

2. X-RAY OBSERVATIONS

NGC 1316 was observed with the ROSAT HRI on Jan. 14, 1994 and Jul. 7-10,

1994 for a total exposure time _40 ks (3/4 of total observations were obtained in the

July run). The two data sets are consistent with each other within the observational

uncertainty. We present the combined results except as mentioned in §2.1. The field of

view of this observation also includes the companion elliptical galaxy NGC 1317 (Figure

1). The observational log and basic parameters of both galaxies are given in Table 1. NGC

1316 was also observed with the ROSAT PSPC (Feigelson et at. 1995), and we used the

PSPC archival data to determine spectral parameters.

Given the limited statistics of our HRI observation, we have used various binning

and smoothing factors to investigate both large scale (a few arcmin) and small scale (_

1 arcmin) features. We used both IRAF and software we developed ourselves to analyze

our data. We adopt a distance to NGC 1316 of 27.2 Mpc using Ho = 50 kin s -1 Mpc -1

(Fabbiano et at. 1992).

To extract source data, the field background must be subtracted. We found that esti-

mates from the background map generated by the standard ROSAT SASS processing and

from local measures of the background in concentric annuli around the sources agree well

with each other. We will present results obtained with the local background subtraction.

2.1 X-ray Emission Features and Sources

The entire observed field of view is shown in Figure I, where the X-ray contour map

is overlaid on the optical image obtained from the Digitized Optical Survey (2). The X-ray
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image wasbinned with a pixel sizeof 8" and smoothedwith a Gaussianof a -- 16". The

background is not subtracted. The octagonal shape indicates the boundary of the HRI

detector. The figure shows a strong X-ray source at the center of the field, corresponding

to the optical position of NGC 1316. Also X-ray emission is detected at the optical position

of NGC 1317 (6.3" to north of NGC 1316). Additionally, 10 point-like sources (above 3a)

are detected in the observed field. The source position, radius of the count extraction circle

and X-ray count for each source are listed in order of RA in Table 2. The corresponding

source numbers are marked in Figure 1. X-ray counts were extracted from circular regions

centered on their X-ray centroids. The radius was determined with the radial profile of

the X-ray surface brightness (§2.2.). Typically these radii extend to where the surface

brightness is within ,,_3-4 % of the background. The background counts were extracted in

annuli r=60" - 200", except for NGC 1316 where an annulus r=200" - 400" is used.

2. The Digitized Sky Survey was produced at the Space Telescope Science Institute under

U.S. Government grant NAG W-2166. The images of these surveys are based on photo-

graphic data obtained using the Oschin Schmidt Telescope on Palomar Mountain and the

UK Schmidt Telescope.

With the HRI observation of NGC 1316 we can trace the X-ray emission out to 170",

or 22.4 kpc at an adopted distance of 27.2 Mpc (see §2.2). However, the X-ray emission is

extended at least to 1000" (Fabbiano et al. 1992; Feigelson et al. 1995). The other sources

(including NGC 1317) are point-like. Except for NGC 1316 and 1317, the sources are not

identified with known objects in the SIMBAD catalog.

Source 2 and 12 are possibly variable. Their count rates from the two HRI observing

epochs (Table 1) are significantly different (above 3 a), while count rates of other sources

are consistent within the count errors between the two observations (see Table 3). The

small numbers of source counts do not warrant further temporal analysis.

The number of serendipitous sources (omitting the target galaxy) found in this ob-

servation is consistent with the expected number of background sources. According to the

LogN-LogS function (Hasinger et al. 1993), we would have about 9 sources within a circu-

lar area of radius 15' and a limiting flux 1.8 x 10 -14 erg sec -1 cm -2 in 0.5-2.0 keV, which

corresponds to the faintest among detected sources (Table 2) for a power law spectrum

with aE -- 1.



Figure 2 provides a close-upview of the NGC 1316 X-ray image which was binned

with a pixel size of 2 _' and smoothed with a Gaussian of a = 4", corresponding to FWHM

= 11.3 _t for an on-axis point source. This image covers a 3 t × 3' field which falls inside

the optical galaxy (12 r x 8.5 p in D2s x d2si see Table 1). Inside the central arcmin, the

X-ray emission is elongated along the NF_,-SW direction, following the optical major axis

(PA=50°; RC3), while in a larger scale (.v2'), the X-ray emission is extended along the

N-S direction. This extension is more pronounced toward the north (see also Figure 1).

The observed NF_,-SW elongation inside r ,-_ 1' is intriguing if real because it may be

related to a disk forming in the rotating cooling flow (§4.2) and because the radio jet in

projection appears to propagate perpendicular to the direction of this elongation (§4.3). To

determine its statistical significance, we first applied a straightforward test by comparing

counts and errors in angular sectors at different position angles. We then applied more

sophisticated tests: a Monte Carlo simulation and moment analysis. Figure 3 compares

the counts at different position angles and gives the significance of differences. Overall the

difference between counts extracted in the NE-SW (PA=30-70 °, 210-250 °) and NW-SE

(PA=120-160 °, 300-340 °) is very significant with a signal to noise ratio of 7.7 a within

r < 40 ft.

To estimate whether the flattening of the X-ray isophotes at small radii is due to chance

positioning of a few noise 'blobs' from an underlying spherical distribution, we have run a

Monte Carlo simulation. This involves: (1) choosing a spherical model; (2) creating a set of

'observations' in which Poisson noise is added to the model and each X-ray is distributed

taking into account the HRI PRF; and (3) then determining the chance probability of

occurrence of the observed features. We generated a smooth model image by adopting

the X-ray rgdial profile determined in §2.2 under the assumption of spherical symmetry.

Then we normalized the model image and added background counts to match with our

HRI observation. We produced a set of 100 'observations' with a pixel size of 2 t_ (as in

Figure 2) by estimating Poisson deviate for each pixeI value and distributing the photon

according to the PRF. To estimate how often we obtain an elliptical surface brightness

by chance, we examined simulated images after smoothing with the same Gaussian a as

in Figure 2. Out of 100 images, no eUipticity as significant as that of Figure 2 is seen.

In our simulations, we also added serendipitous sources at random positions according to:

the LogN-LogS function (Hasinger et al. 1993) to verify whether a few undetected point

sources can mimic our observed features. However the results do not change appreciably.

In conclusion, the chance probability to generate the observed, elongated distribution of
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the inner X-ray surfacebrightnessout of a circularly symmetrical distribution is lessthan
1%.

To parameterize the X-ray surfacebrightnessdistribution, wehaveapplied a moment

analysis (seefore details, Buote and Canizares1994 and Carter and Metcalfe 1980). E1-

lipticities (e) and position anglesof the semi-major axis (0) are iteratively determined by
computing two-dimensional moments of inertia within elliptical apertures. We used an

unsmoothed, raw image (2" pixel) with background included. The measuredellipse pa-
rameterswith a semi-major axisvaryingfrom 10'1 to 50 II are e = 0.28 + 0.05 and 8 = 56 ° 4-

8 °. We have also applied ellipse fitting (e.g., Jedrzejewsld 1987), using the IRAF/STSDAS

package to the smoothed image in Figure 2. The derived position angle and ellipticity are

consistent with those determined by the moment analysis within their uncertainties.

Figure 4 shows the central region in greater detail with a pixel size of 1" and smoothed

with a Gaussian of a = 2 r_ which corresponds to an on-axis beam of 6.9 'r FWHM. In this

scale the core surface brightness divides into double peaks, separated by 7.3 t_. The optical

center (RC3) is close (within arcsec) to the X-ray centroid determined with the image in

Figure 2 and falls in the middle of the double peaks shown in Figure 4. Also noticeable

are larger scale valleys at PA -_ 120 ° and PA "2_320 ° which apparently bisect the core if

extended to the center.

The double peaks and the SF_,-NW X-ray valleys are not caused by telescope aspect

problems. We used only data obtained in the July run (see Table 1), to avoid a possi-

ble mismatch of the galaxy centers in the two observations due to aspect uncertainties,

although source positions differ by less than 2 _r. The data obtained in the January run

also present _he same features but with larger statistical noise. To further check potential

aspect problems, we applied the same binning and smoothing to point-like sources within

the observed field. Sources 4, 7, and 8 which are within 51 from the field center [therefore

the HRI PRF is similar to the on-axis one (David et al. 1993)] are all circularly shaped

while sources 2 and 12, both at 11 _ off-axis distance (the PRF may not be circular), exhibit

randomly elongated distribution.

The observed features are very interesting, because the radio jet (Geldzahler and

Fomalont 1984) in projection appears to pass through the X-ray valleys (§3). However,

the relatively low X-ray counts obtained in this high resolution image may produce an

artificial feature by chance positioning of a few noise 'blobs'. To explore this possibility,

we have rerun a Monte Carlo simulation as described above. Out of 100 simulations with
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a resolution same as Figure 4 (1" pixel and a=2"), 3 images exhibit double peaks and

valleys, although not as significant as the observed. This simulation results imply that the

existence of the double peaks and the X-ray valleys, although suggestive, is not conclusive

and it is required to be confirmed by a deeper observation.

2.2 Radial Profile

Figure 5 shows the radial profile of the X-ray surface brightness measured in concentric

rings centered on the NGC 1316 X-ray centroid (Table 2). The raw, background and net

counts are indicated by open squares, a solid line and filled squares, respectively. The

emission is extended out to 170", 22 kpc at the adopted distance of 27.2 Mpc. To this

profile, we fitted a King approximation model, _x "" (1 + (r)2)-3B+0.5, convolved with

the HRI point response function. [In the case of gaseous emission, _ is related to a true

isothermal value by _i = 1.5 × _ (e.g., Sarazin 1988)]. Best-fit model, fit residuals, and

confidence contours are shown in Figure 6. The best fit parameters and 90% confidence

range with 2 interesting parameters (in parentheses) are: core radius a = 4.1" (3.1-5.0")

and slope j5 = 0.51 (0.49-0.54), yielding X 2 = 14.8 for 9 degrees of freedom. The estimated

slope corresponds to l_x "-_ r -2"06 (1.94-2.24) for r >> a. This is close to that of the optical

brightness distribution. Using the data in Schweizer (1981), we estimated the slope of the

V4 (5300-6400_) surface brightness in r = 30" to 300" to be 2.02 4- 0.06. The radial slope

measured with the red continuum image (§3) does not differ sinificantly. We also used the

PSPC data to derive the radial profile of the X-ray surface brightness. Using the radial

profile within r= 180" (to minimize the contribution of extended IC emission; see §2.3 and

Feigelson et al. 1995), and a background count rate estimated at r=1800-2400 _' (with

vignetting correction), we find ]Ex "_ r -2"2s (2.z2-2.4s), consistent with the HtlI profile.

Fits to the radial profiles at the position angles of Figure 3, which take into account

the central flattening of the surface brightness give slightly steeper slope [/3 = 0.56 (0.52-

0.61)] and slightly larger core radius [a = 6.2" (4.1-8.2)] along the direction of flattening,

whereas the opposite is true along the perpendicular direction [fl = 0.46 (0.43-0.50) and

a = z.s" (< 3.s)].

A central point source that may be the X-ray counterpart of the radio AGN was not

detected with our HRI observations (see the HRI PRF indicated as a dashed line in Figure

5; see also Figure 4). To estimate an upper limit to a central point source, we applied the

King model plus the HRI point spread function in fitting the radial profile and determined

how strong a central source can be added without having X 2 too large. We derive an upper



limit (90%) for the central source of about 5% of the total counts, which corresponds to a

flux of 1.0 × 10 -13 erg sec -1 cm -2 in 0.1-2.4 keV and a luminosity of 9 × 1039 erg sec -1.

Here we assumed a power law with an energy index C_E=0.7 and line-of-sight NH. Of

course a more luminous AGN would be allowed in the presence of large intrinsic NH.

The spectral analysis of the extended X-ray emission associated with NGC 1316 (§2.3)

suggests that over 60_ of the flux is likely to be of gaseous origin. In the assumption

that most of the extended emission is due to a hot ISM, we have derived its 3-dimensional

density distribution, using a direct deprojection method (Kriss, Cioffi and Canizares 1983),

where the emissivity (or density) is inwardly measured by subtracting the contribution of

successive spherical layers. We implicitly assume that the hot gas is homogeneous and that

the physical status of the gas at a given radius can be represented by one temperature and

density. The deprojected density profile is shown in Figure 7a. We have assumed T = 0.8

keV (§2.3). The density profile corresponding to j3=0.51, i.e., n_ ._ r -1"83 is also shown as

a dashed line in the figure.

Using the deprojected density distribution, we estimate the cooling time and gas

pressure as a hmction of radius (Figure 7b). The cooling time is given as rc = 1.5 nkT
nenHA

where n, ne and nH are the total particle density, electron density, and Hydrogen density,

respectively and A is the cooling function. The constant is in the range of 1 to 2.5,

depending on its definition (see Sarazin 1988). The cooling time in the center is ,_10 s

years, much smaller than the Hubble time; it reaches 10 l° years at --,180". To estimate

the cooling function, we assumed solar metal abundances. With the PSPC spectral data

(§2.3), the metal abundances cannot be determined unambiguously (see also e.g., Trinchieri

et al. 1994; Fabbiano et al. 1994a). The cooling time in the central region is still much

shorter than-the Hubble time even with a zero metal abundance model. We also estimate

the thermal gas pressure using the measured density and assuming kT = 0.8 keV (Figure

8).

We point out that these radial dependences of density, cooling time and pressure

are only indicative average values. Because of the complexity of the surface brightness

distribution in the inner regions, we would expect a range of these physical parameters at

each radius, reflecting the clumpiness of the hot ISM. Also as remarked earlier, we cannot

study separately the properties of the different components of the emission suggested by

the PSPC data.

2.3 ROSAT PSPC Spectral Properties
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In order to determine the X-ray spectral properties, we have used the ROSAT PSPC

data obtained from the public archives. The method of data reduction is similar to that

of the PSPC observations of NGC 507 (Kim and Fabbiano 1995). Because the X-ray

emission is extended at least out to 1000" (see Feigelson et al. (1995) for discussions of the

extended stYucture of X-ray emission), we determined the background at r= 1800-2400" and

applied vignetting correction to each energy channel. Since we are interested in the galaxy

emission, we have analyzed the X-ray emission within 180" from the center. Feigelson et

al. (1995) found Inverse Compton (IC) radiation at the location of the extended radio

lobes. The slope of the X-ray radial profile changes abruptly at r,,_lS0", indicating that

the X-ray emission in the central region has a different origin from that of the extended

X-ray emission (Feigelson et al. 1995). To check for possible contribution of IC radiation

to the X-ray emission within r < 180", we also estimated the background using portions

of the field within the PSPC support structure (r ,-_1000") where the diffuse emission is

least. However, the results are not significantly different.

Using XSPEC, we found that the X-ray spectra within 180" can be well reproduced

either by a one-temperature, low abundance model (kT __ 0.6-0.7 keV and --_10% solar

abundance) or by a two-temperature, solar-abundance model (kT1 -_ 0.1-0.2 keV and

kT2 - 0.8-0.9 keV at 90% confidence). In both cases, the acceptable range of NH is

consistent with the Galactic line-of-sight value (2 x 102° cm-2). The best fit parameters and

acceptable ranges with NH fixed at the line-of-sight value are listed in Table 4. Although we

prefer the two-component model rather than the almost zero-abundance model (see §5.1),

both models suggest a significant amount of hot gaseous emission, because a significantly

higher kT would be expected from a population of LMXB (see the analysis .of the M31

bulge data by Fabbiano, Trinchieri and van Speybroeck 1987). We do not see any radial

variations in the spectral parameters (temperature and NH) with the PSPC observations

(Table 4).

The absorption-corrected X-ray flux for the best fit parameters is 2 x 10 -12 erg sec -1

cm -2 (see Table 5), corresponding to a X-ray luminosity of 1.8 x 1041 erg sec -1 at the

adopted distance of 27.2 Mpc. The HRI flux is consistent with the Einstein IPC flux (see

Table 1). For the two-component model, the X-ray flux of the very soft component is

,--40% of the total flux in 0.1-2.4 keV, similar to those seen in other X-ray faint early type

galaxies (Fabbiano et al. 1994a, Fabbiano and Schweizer 1995). These results indicate the

presence of hot ISM contributing at least 60% of the total X-ray emission even if the soft

component is fully of stellar origin.
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The anM.ysisof the HRI image (§2.2) shows that a nuclear point source cannot con-

tribute significantly to the emission in the ROSAT band. Therefore the spectral parameters

(even in the outermost bin) are representative of an extended emission component. To es-

timate the upper limits of hard X-ray emission from low-mass binaries to this emission [as

seen in the-bulges of spirals (Fabbiano 1989) and in ellipticals (Matsushita et al. 1994;

Matsumoto et al. 1997)], we added a hard Bremsstrahlung component in the spectral

fitting and determined the acceptable range of its normalization. Its temperature was

allowed to vary between 3 and 20 keV. The 90% upper limit of the hard component is

15% of the total flux in 0.1-2.4 keV for a one-temperature, low abundance model and 20%

for a two-temperature, solar-abundance model. Even if we restrict our analysis to the

central 1 arcmin region, the contribution of the hard component is less than 20% for a

1-component model and 30% for a 2-component model. This upper limit corresponds to

fluxes of 3 - 4 × 10 -13 erg sec -1 cm -2 and luminosities of 3 - 4 × 104° erg sec -1 (Table 5).

The X-ray to optical luminosity ratio is then Lx/LB < 2 - 3 × 102_ erg sec -1 L® -1 and

is consistent with that of the bulge of M31 where the X-ray emission is dominated by a

population of individual bright X-ray sources (e.g., Trinchieri and Fabbiano 1991) and with

those of hard components in other early type galaxies observed with ASCA (Matsumoto

et al. 1997).

3. COMPARISON WITH OTHER WAVELENGTH DATA

Figures 9, 10 and 11 compare the high resolution HRI contour map of Figure 2 with

the distribution of dust (Schweizer 1980), ionized gas, and radio continuum (Geldzahler

and Fomalont 1984), respectively. Although the low signal-to-ratio nature of the X-ray

data is such that a definitive, quantitative comparison can not be done, there are some

qualitative trends that it is worth to mention.

In general, the hot and cold ISM are related in the sense that the X-ray emission is

significantly reduced at the locations where the dust patches are more pronounced. In

particular, a dust lane is found in the central SE X-ray valley, suggesting the possibility of

absorption.

Because the ionized gas may be originated from the cooling hot gas, the distribution of

ionized gas provides further clues of the relationship between cold and hot ISM. Narrow-

band CCD images were taken on the photometric night of 1994 November 11/12. The

CTIO/University of Michigan Curtis Schmidt 0.6/0.9m telescope was used with a Thomson
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1024x1024 CCD. Pixel size is 19pro square (1.835") however vignetting limits the useable

field size to about 30'. Total exposure times were 8100s each for the redshifted (v=lS01

kin/s) Ha + [NII] (A 6563 + AA 6548,6583) emission line filter (Ac = 6606A, FWI-IM=76A

), and continuum filter (Ac = 6693A, FWHM=81A ). Bias and dark frames were taken.

Flatfields w-ere generated from twilight sky exposures. The spectrophotometric standard

HZ 4 was used to calibrate the narrow band images based on AB magnitudes (Oke 1994,

private communication). The adopted magnitudes were AB6606 =15.01 and AB6693 =14.81.

The Ha + [NII] image was derived by subtracting a scaled, sky subtracted continuum

image from the sky subtracted emission line image. The adopted scaling was calculated

from a linear least square fit to residuals of 25 field stars calculated from several scaling

factors. The mean pixel value of the Ha + [NII] image at large radii of the optical galaxy

was also consistently near zero. The distribution of ionized gas is shown in Figure 10,

superposed on the X-ray image (same as Figure 2). The overall distribution of the ionized

gas is similar to that of the dust, ie., aligned toward north-south, slightly turned to NW

and SE (clockwise), as observed in other early type galaxies with cold ISM (Kim 1989).

The peak of the northern blob (40".5, 1Y.8) falls in between the dust patches, likely due to

dust absorption. The eastern part of the southern blob generally follows the distribution of

the dust patch. Comparing the distributions of hot and warm ISM, we also find an overall

similarity (e.g., N-S extension), but there is not always a one-to-one correspondence.

Figure lla shows the radio jets superposed on the X-ray image (same as Figure 2).

This radio image was reproduced from the Figure 2b in Geldzahler and Fomalont (1984),

which was obtained with the VLA and has 4" resolution at 1.5 GHz. The direction of

the radio jet is in projection perpendicular to the direction of NE-SW elongation of the

central X-ray distribution. If confirmed, the X-ray valleys (seen in Figure 4) may imply

even more striking relations in that both sides of the radio jets in projection coincide with

the X-ray valleys at PA--120 ° and PA_320 ° (Figure llb), suggesting that the radio jets

are interacting with the surrounding hot gaseous medium as seen in Cygnus A (Carilli,

Perley and Harris 1994).

These connections need to be checked with future high resolution observations. The

AXAF CCD detector will provide 1" resolution data with spectral resolution as well, which

will be ideally suited for this type of investigation.

4. DISCUSSION

4.1 The Nature of X-ray Emission of NGC 1316
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The X-ray emissionof E and SOgalaxiescanbe due to different sources(seeFabbiano

1989): a hot gaseoushalo dominating the emissionin the X-ray bright early type galaxies;

integrated stellar X-ray binary emission,seenin the bulges of spirals (seeFabbiano 1989)
and confirmed in ellipticals with ASCA (Matsushita et al. 1994;Matsumoto et al'. 1997);a
nuclearsource,seenin bright radio galaxies(Fabbiano et al. 1984;Worrall and Birkinshaw

1994);and avery soft component,seenin X-ray-faint early type galaxies(Kim et al. 1992b;

Fabbianoet al. 1994a;Kim et al. 1996)of debatablenature (e.g.,Pellegrini and Fabbiano

1994). NGC 1316is both anX-ray faint D (maybecD) galaxy and aradio galaxy, therefore
its X-ray emission is likely to be complex.

With the HRI imaging data and the PSPCspectral data, wecan limit the contribution

from the nuclear componentand stellar binary component respectivelyasbeing relatively

unimportant to the detectedX-ray emission (Table 5). The upper limit to the nuclearX-

ray emissionobtained with the HRI image (§2.2)is Lx < 9 x 1039 erg sec -1, which is about

5% of the total luminosity. Of course a more luminous nuclear source could be present and

not visible if the nuclear NH is much higher than the line of sight one. With the PSPC

spectra, we can pose an upper limit to the hard stellar component of 20-30% of the total

flux in 0.1-2.4 keV (Lx < 3-4 x 104° erg sec-1; §2.3). This is consistent with the expected

hard X-ray emission from a 'bulge' population of X-ray sources (e.g., scaling from the M31

bulge; Trinchieri and Fabbiano 1991). Individual typical X-ray binary sources would not

be detectable at the luminosity threshold of our observation (a few x 1039 erg sec-1).

The PSPC spectrum of NGC 1316 (§2.3) suggests that most of the X-ray emission

within 3' is due to a hot ISM in this galaxy. Although with the PSPC data we cannot

unequivocally define the emission model, the spectral fits require the presence of a ,,_0.7-0.9

keV thermal'emission (Table 4). The X-ray spectrum of NGC 1316 resembles that of other

X-ray faint early type galaxies. X-ray spectra of those galaxies observed both with the IPC

(Kim et al. 1992a) and the PSPC (e.g., Fabbiano et al. 1994a) present an excess of counts

in the lowest energy channels, when compared to those of X-ray bright E and SO. This

type of spectrum can either be fitted with a metal-free single-temperature optically-thin

model, or with two (or more) component models (see Fabbiano et al. 1994a; Pellegrini

and Fabbiano 1994; Fabbiano and Schweizer 1995). Recent ASCA measurements of the

spectrum of the X-ray faint galaxy NGC 4382 (Kim et al. 1996) reject the single-component

metal-free model in that galaxy. The two component model, in the case of NGC 1316,

would consist of a very soft component of kT ,_ 0.1-0.2 keV (which could be of stellar

origin, e.g., Pellegrini and Fabbiano 1994), and a harder (kT _ 0.7-1.0 keV), almost solar
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metallicity ISM. It is interesting that the abundance of the ISM determined from this two-

component model is near to the optical metallicity of this galaxy (e.g., Gorgas, Efstathiou

and Salamanca 1990). However, based on more general ASCA results on galaxies (e.g.,

Loewenstein et al. 1994; Arimoto et al. 1996), the latter may just be a coincidence.

Although a hot ISM is present, the total amount of hot gas is --_109 Mo, only a fraction

of that present in X-ray bright early type galaxies with a comparable optical luminosity

(for example, Mg_, --, 2 × 101° M® in NGC 4636; Trinchieri et al. 1994). NGC 1316 clearly

has not been accumulating all the gas ejected from the evolved stars during a Hubble time,

which would be -,,3 × 10 l° M O. This is not surprising since this galaxy may have undergone

recent merging events (see Schweizer 1980). Recent mergers (Hibbard et al. 1994) and

dynamically young ellipticals (Fabbiano and Schweizer 1995) also tend to be relatively

empty of hot ISM. It may be a coincidence, but the mass of the hot ISM is comparable

with what would be expected from stellar accumulation in ,,_1 Gyr, which may be the age

of merger (Schweizer 1980). In a recent paper discussing the optical and X-ray emission at

larger radii, Mackie and Fabbiano (1997) find -,,3 × 10 s M o of hot ISM spatially coincident

with the tidal tails in the outskirts of NGC 1316.

4.2 Multi-phase ISM

The comparison between X-ray and optical data reveals that the distribution of the

X-ray emission is related with that of dust patches (§3.1.). The X-ray emission is weak

where dust is seen and X-ray blobs are often surrounded by dust patches. The X-ray

valleys running toward NW and SE from the center (Figure 4), if confn-med, may be real

low density regions in the hot ISM, because they are not coincident with dust patches,

except in thd central SE region. The ionized gas is overall cospatial with the dust patches.

However, the northern blob of the ionized gas falls in between dust patches, while the

southern blob coexists with dust, indicating some of the line emission is absorbed by the

dust.

The origin of the ionized gas (i.e., ionization mechanism) is unclear in early type

galaxies. The emission lines often indicate LINER-type nuclear activity rather than HII

regions, judged by for example the relative line strengths Ha to [NII] flux ratio (e.g.,

Kim 1989). It has also been suggested that the gas is photo-ionized by post AGB stars

(Trinchieri and di Serego Alighieri 1991). In the case of galaxies containing significant

amounts of hot ISM, the ionized gas may also be the result of cooling flows (e.g., Sarazin

1988), but this is unlikely in NGC 1316.
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In NGC 1316, the kinematics of the ionized gas revealed that the gas is rapidly (up

to 350 km sec -1) rotating along the minor axis (PA=127-142°; Schweizer 1980), while the

stellar system rotates along the major axis (PA=50°; Bosma, Smith and Wellington 1985).

The same is true for molecular gas (Sage and Galletta 1993). This suggests an external

origin for tile cold and ionized ISM, perhaps connected with the merging episode (Schweizer

1980; Mackie and Fabbiano 1997) and argues against the idea that the ionized/cold gas is

originated from cooling hot gas. In the latter case both hot and cold/warm gas would be

expected to have the same kinematics as the stars, since the hot ISM is likely to originate

from stellar evolution. Different origins of warm gas (likely cold gas and dust as well)

and hot gas may be further supported by our HRI observations in that the central X-ray

flattening, possibly a disk would rotate along the major axis and that the morphological

relationships between the ionized gas and the X-ray emission are lacking. Therefore, it is

likely that the cold and warm ISM might be acquired externally by mergers and infalls

occurred ,-_109 years ago, while the hot gas has been accumulated since the latest merger.

If the infalling, cooling hot ISM carries angular momentum it may form an accretion

disk, which could be extending out to a 10 kpc radius (see Kley and Mathews 1995;

Brighenti and Mathews 1996). The NF_,-SW flattened isophotes of NGC 1316 (Figure 2)

may represent such a disk. However, because the isophotes are measured at radii less

than the optical effective radius, the stellar potential needs not be round at these radii.

Therefore, the observed elongation may be consistent with hydrostatic gas in the stellar

potential (or with a modest amount of dark matter).

4.3 Is the radio jet thermally confined?

Interestingly, the observed elongation in the hot gas structure is approximately perpen-

dicular to the radio jet of NGC 1316. The possibility of thermal confinement is supported

by the radial behaviour of the jet/ISM energetics. We estimated the radio jet pressure

corresponding to the minimum energy using the radio map by Geldzahler and Fomalont

(1984) (see Feigelson et al. 1995 for the validity of the minimum energy argument). We

applied the prescription for a Gaussian jet given in Killeen, Bicknell and Ekers (1986a;

see also Pacholczyk 1970). We also used the cylindrical jet approximation (see Perley,

Willis and Scott 1979), but the results do not change significantly. We assumed that: the

jet and the magnetic field are perpendicular to the line of sight; the energy of relativistic

electrons is equal to that of protons and ions; the radio spectrum is a power law from 10

MHz to 10 GHz with a slope a=0.7; and the volume filling factor is unity. The estimated

jet pressure is compared with the thermal pressure in Figure 8. At 6 - 24" from the ceil-
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tar, the jet pressurefor both NW and SE jets is an order of magnitude lower than the

thermal pressure. Radio and thermal pressure are supposed to be in balance in the case of

thermal confinement. However, as discussed by Killeen et al. (1988) the radio minimum

pressure could be easily underestimated (see also Pacholczyk 1970) while the similarity of

the radial }_ehaviour of radio and X-ray pressures argues for thermal confinement. This

apparent contradiction between the thermal gas and minimum radio pressures has also

been reported in similar cases where radio jets are expanding through the hot gaseous

environment (e.g., Bohringer et al. 1993; Carilli, Parley and Harris 1994).

The possibility (suggested by Figure 8) that the jet is thermally confined inside a

relatively small region reinforces the suggested lack of causal connection between the jet

and the extended lobes (Ekers et al. 1983). It is possible that active events took place

some time ago, probably induced by a merger (-,_109 years ago; Schweizer 1980) and now

the nucleus is relatively weak and the radio lobes are slowly cooling (see also Ekers et

al. 1983). This idea is also supported by the relative power (_1/2500) of the jets to the

extended radio lobes, which is a few hundred times lower than that of a typical early type

galaxy (Slee et al. 1994); the lack of strong optical emission lines (see Schweizer 1980);

the absence of a connection between the jet and the lobe (Geldzahler and Fomalont 1984);

and the morphology of the lobes (Fomalont et al. 1989).

The double peaks and X-ray valleys seen in Figure 4, if confirmed, will provide more

direct evidence for interaction between the hot gas and the radio jet. Both sides of the

radio jets in projection appear to pass through the X-ray valleys which may play a role as

nozzles in collimating the jets.

4.4 The Nucleus

Fabbiano et al. (1984) found a relationship between radio core power and X-ray

luminosity in a sample of 3CR galaxies, indicating that both ra,lio and X-ray emission are of

non-thermal nuclear origin. This relationship holds down to radio faint galaxies (Fabbiano

et al. 1989). Recently, with ROSAT observations, Worrall and Birkinshaw (1994) spatially

decomposed central X-ray point sources from the diffuse, extended emission in several

radio galaxies and confirmed the linear relationship between core radio and central X-ray

emission in low-power radio galaxies. Although the X-ray core of NGC 1316 is not detected,

the ratio between the X-ray upper limit (corresponding to IlkeV <_ 6.3 × 1021 erg s -1 Hz -1 )

and the radio core emission (IsvHz ---- 2 x 1028 erg s -1 Hz -1, form Geldzahler and Fomalont

1984) is consistent with the linear relationship between these quantities discussed above.
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A comparison of the spectral energy distribution (SED) of the NGC 1316 nucleus

with those of other LINER galaxies can be found in Fabbiano and Juda (1997). It is worth

noting the possible similarity between the nuclear sources of NGC 3998 and NGC 1316

(both early type galaxies). They both present a bright UV point-like source discovered with

HST, and/fieir SED differ from those of bright AGN (see also Fabbiano et al. 1994b). A

better coverage of the nuclear emission of these faint AGN will be necessary to understand

the emission mechanism.

5. CONCLUSION

We have presented the analysis of the high spatial resolution image and of the X-ray

spectrum of NGC 1316 (Fornax A) obtained with the ROSAT HRI and PSPC. The results

lead to the following conclusions:

(1) The X-ray emission of NGC 1316 is extended. No point sources are detected

within the galaxy at a luminosity threshold of a few x 1039 erg sec -1. The radial profile

of the X-ray surface brightness falls as r -2 , which is close to the optical light distribution.

No gradient of the X-ray emission temperature is seen. Within the central 40", the X-ray

isophotes are flattened along the optical major axis. In a larger scale (1-2r), the X-ray

emission is extended toward N-S, in agreement with the PSPC report of Inverse Compton

emission (Feigelson et al. 1995).

(2) The X-ray spectrum of NGC 1316 (r < 180") can be reproduced either by a single-

temperature low-abundance model (kT = 0.7 keV and 10% solar) or by a two-temperature,

solar-abundduce model (kT1 = 0.1-0.2 keV and kT2 = 0.8-0.9 keV). These results indicate

the presence of hot gaseous component contributing to >60% of the total X-ray emission.

We set an upper limit of ,-_20% of the total emission due to a hard component from LMXB

in NGC 1316, consistent with an extrapolation based on the bulge of M31 as well as those

of early type galaxies observed with ASCA. The total X-ray emission is 2 x 1041 erg sec -1

in the 0.1-2.4 keV band and Mgas "-" 109M®. The relatively small amount of hot ISM

present in this X-ray faint galaxy [by comparison with that of X-ray bright E and SO such

as NGC 4636 and NGC 4472 (e.g., Fabbiano et al. 1992)] is consistent with observations of

other systems that may have undergone relatively recent merging (Fabbiano and Schweizer

1995).

(3) The X-ray emission is significantly reduced at the locations where the dust patches
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are more pronounced, indicating that some of the X-ray emission may be absorbed by the

internal cold ISM in NGC 1316. The ionized gas is generally distributed along with the dust

patches. Some features of the ionized gas appear to be related with a hot ISM but there is

no one-to-one correspondence. Both morphological relations and kinematics suggest that

the hot and-cold/warm ISM may not have the same origin. The cold/warm ISM might be

acquired externally by mergers/infalls, while the hot ISM has been accumulated since the

latest merger.

(4) In projection, the direction of the radio jets is perpendicular to the central NW-SE

elongation of the X-ray emission. The thermal pressure is higher than the jet equipartition

pressure by an order of magnitude. However, the radial behaviour of thermal and radio

pressures are similar, suggesting the possibility of thermal confinement.

(5) Although a nuclear source is not detected in X-rays, the upper limit (Lx < 9 × 1039

erg sec -1) is consistent with the expectations, based on the extrapolation from low-power

radio galaxies (Worrall and Birkinshaw 1994).
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Table 1

Basic parameters

NGC 1316 NGC 1317

ILk (J2000) a

DEC (J2000) a

B_ (mag) _

D (Mpc) b

D25(arcsec)
(cm-2) c

HRI Observed Date d

HRI Exp time (sec) d

HRI Observed Date e

HRI Exp time (sec) ¢

PSPC Observed Date

PSPC Exp time (sec)

Log Fx (IPC) erg sec -1 cm -2I

3 22 41.6 3 22 44.7

-37 12 28 -37 6 10

9.40 11.81

27.2 27.2

721 165

2.0 x 1020 2.0 x 1020

Jan. 14, 1994 Jan. 14, 1994

11038 11038

Jul. 7-10, 1994 Jul. 7-10, 1994

29403 29403

Jan. 13-20, 1992 Jan. 13-20, 1992

255O0 255OO

2.0 x 10 -12 <2.7 x 10 -13

a. Right Ascension (RA), declination (DEC), total face-on B magnitude (B_), and

major isophotal diameter measured at B = 25 magnitude arcsec-2(D2s) taken from

de Vaucouleurs et al. 1991 (RC3)

b. Distance from Fabbiano et al. 1992.

c. Galactic line of sight HI column density from Starks et al. 1992.

d. Sequence number 600255n00

e. Sequence number 600255a01

f. I'PC flux from Fabbiano et al. 1992. Fluxes were estimated in a energy range of

0.2-4.0 keV for a l_ymond-Smith model with solar abundance, kT=lkeV and line of

sight Nit. The count extraction radii are r=450" for NGC 1316.
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Table 2

X-ray sources

source X Y radiusc offaxis vignetting net error Fx_

number pixel arcsec arcmin correction cnts 10 -13

1 5599.86 3823.70 30 12.9 1.076 67.44 15.77 0.53

2 5075.38 4998.42 25 10.9 1.055 89.45 d 14.96 0.69

3 4468.47 4499.67 30 4.4 1.012 48.61 15.52 0.36

4 4104.82 3607.70 25 4.7 1.013 86.11 15.30 0.64

5 _ 4076.98 4108.50 170 -- -- 2047.79 85.77 14.99

6 b 4009.78 4862.26 20 6.2 1.020 120.29 15.05 0.90

7 3842.10 4436.98 25 3.4 1.008 35.52 13.19 0.26

8 3702.10 3687.70 30 5.1 1.015 68.92 16.08 0.51

9 3296.79 3583.91 15 8.1 1.033 31.89 9.79 0.24

10 3041.20 3157.04 25 12.0 1.065 53.90 13.76 0.42

11 2959.06 4396.66 20 9.7 1.045 44.42 11.83 0.34

12 2823.38 3703.22 20 11.2 1.057 201.14 d 17.81 1.56

a. NGC 1316

b. NGC 1317

c. Background counts were extrated in annuli (r=200 H- 400" for NGC 1316; r-60 H-

200 _r for all other sources).

d. variable (see Table 3).

e. Fluxes were estimated in a energy range of 0.1-2.4 keV for a Raymond-Smith model

with solar abundance, kT = 1 keV and line of sight NH. Vignetting correction was

applied.-
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Table 3

Variable Sources

source Jan. 94 Jul. 94 difference

_ number rate err rate err a

2 -0.47 0.56 3.22 0.46 5.09

12 7.81 1.04 3.92 0.46 3.41

Rates and errors are in unit of counts in 1,000 seconds.
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Table 4

SPECTRAL FIT OF PSPC DATA s

2-Component fitwith solarabundance b

radius

(-)

kT1

(keV)

kT2

(keY)

Norm c _2 degrees of

freedom

0-60

60-180

0-180

0.16 (0.13-0.20)

0.15 (0.11-0.17)

0.16 (0.14-0.17)

0.83 (0.76-0.90)

0.86(0.72-1.04)

0.84 (0.79-0.89)

1.68 (1.44-1.88)

0.74 (0.54-1.03)

1.23 (1.08-1.38)

26.61

17.89

25.34

23

23

23

1-component fit with varying abundance d

radius kT Abundance X2

(") (keV) (solar)

degrees of

freedom

0-60 0.70 (0.65-0.77) 0.12 (0.10-0.15) 14.36

60-180 0.59 (0.48-0.70) 0.03 (0.02-0.05) 21.14

0-180 0.68 (0.63-0.73) 0.08 (0.06-0.10) 12.99

24

24

24

a. NH is fixed at the Galactic line-of-sight value, 2 x 1020 cm -2.

b. Errors are at 90% confidence with 3 interesting parameters.

c. Normalization of the second component relative to the first component.

d. Errors are at 90% confidence with 2 interesting parameters.

.- ...
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Table 5

X-RAY FLUX AND LUMINOSITY a

Fluxb Luminosityc

1-component model

total

upper limit of hard binary component

upper limit of nuclear component d

1.9(±0.2)x 10-12 1.7(4-0.2)x 1041

2.9 x 10-13 2.6 x 104o

1.0x I0-13 8.9 × 1039

2-component model

total

0.2 keY component

0.8 keV component

upper limit of hard binary component

upper limit of nuclear component d

2.0(4-0.2)x I0-I_

8.1(4-1.0)x 10-13

1.2(4-0.1)x 10-I;

4.0 x 10 -is

1.0 x 10 -is

1.8(4-0.2)x 1041

7.2(4-0.9)x 1040

1.1(4-0.1)x I04z

3.6 x 1040

8.9 x 10s9

a. The data with r < 180" are used and the errors are based on the acceptable range of normalization at

90%

b. Absorption-corrected flux in unit oferg sec -1 cm -2 in 0.1-2.4 keV.

c. Distance = 27.2Mpc

d. Estimated from the HRI image



Figure Captions

Figure 1. The entire field of view of this HRI observation (NGC 1316 and NGC 1317).

The X-ray contours are overlaid on the optical image obtained from the Digital Sky

Survey,- X-ray image is binned with a pixel size of 8 arcsec, background-subtracted

and smoothed with a Gaussian of a = 16 arcsec. The octagonal shape indicates the

boundary of the HRI detector. The source numbers are ordered by an increasing RA

(see Table 2). RA and Dec are in J2000.

Figure 2. A close-up view of the X-ray image (with a pixel size of 2" and a Gaussian a of

4"). The contours indicate isophotes at 5% to 95% of the peak with 8 steps. RA and

Dec are in J2000.

Figure 3. (a) Radial distribution of X-ray counts extracted in different angular sectors.

The filled circles are for the NF_,-SW sector (PA=30-70 °, 210-250 °) and the open circles

are for NW-SE (PA=120-160 °, 300-340°). (b) The significance of count differences

between two angular sectors.

Figure 4. same as Figure 2 but with a pixel size of 1_ and a Gaussian a of 2". The data

obtained only in the July run are used. The contours indicate isophotes at 6_ to 85_

of the peak with 8 steps.

Figure 5. Radial distribution of X-ray counts determined with the raw, unsmoothed image.

Raw, background (determined at r=200-400"), and net counts are indicated by open

squares, a solid line and filled squares with error bars.

Figure 6. Radial profile of X-ray surface brightness and best fit model prediction.

Figure 7. (a) Deprojected density and (b) cooling time as a function of radius. The density

profile corresponding to fl=0.51 (he "- r -1"5s) is shown as a dashed line.

Figure 8. Thermal gas pressure as a function of radius. The minimum radio pressure along

the jets is also plotted with filled circles (the NW jet) and open circles (the SE jet).

Figure 9. Distribution of dust patches (from Schweizer 1980) overlaid onto the X-ray image

(same as Figure 2).

Figure 10. Distribution of ionized gas overlaid onto the X-ray image. The continuum-

subtracted Ha +[NII] image was smoothed with a 2 pixel (full width) gaussian filter

27



and the X-ray image is the sameas Figure 2.

Figure 11. Radio jet overlaid onto the X-ray image. The radio map was taken from

Geldzahler and Fomaiont (1984). The X-ray image is the same as (a) Figure 2 and (b)

Figure 4.
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ABSTRACT

We have conducted bivariate and multivariate statistical analysis of clam measuring the luminosity and inter-
stellar medium of the Einstein sample of early-type galaxies (presented by Fabbiano, Kim, & Trinchieri 1992).
We find a strong nonlinear correlation between Ln and Ix, with a power-law slope of 1.8 _+0.1, steepening to
2.0 _+0.2 if we do not consider the Local Group dwarf galaxies M32 and NGC 205. Considering only galaxies
with log Lx < 40.5, we instead find a slope of 1.0 _+0.2 (with or without the Local Group dwarfs). Although E
and SO galaxies have consistent slopes for their LrLxrelationships, the mean values of the distribution functions

of both Lx and Lx/LB for the SO galaxies are lower than those for the E galaxies at the 2.8 o and 3.5 o levels,
respectively. We find clear evidence for a correlation between Lx and the X-ray color C2a, defined by Kim,
Fabbiano, & Trinchieri (1992b), which indicates that X-ray luminosity is correlated with the spectral shape below

1 keV in the sense that low-Lx systems have relatively large contributions from a soft component compared with
high-Lx systems. We find evidence from our analysis ofthe 12 _m IRAS data for our sample thOt our SO sample
has excess 12/zm emission compared with the E sample, scaled by their optical luminosities. This may be due to
emission from dust heated in star-forming regions in SO disks. This interpretation is reinforced by the existence of

a strong L_2-L,oo correlation for our SO sample that is not found for the E galaxies, and by an analysis of optical-
IR colors. We find steep dopes for power-law relationships between radio luminosity and optical, X-ray, and far-

IR (FIR) properties. This last point argues that the presence of an FIR-emitting interstellar medium (ISM) in
early-type galaxies is coupled to their ability to generate nonthermal radio continuum, as previously argued by,
e.g., Walsh et al. (1989). We also find that, for a given L,0o, galaxies with larger Lx/La tend to be stronger
nonthermal radio sources, as originally suggested by Kim & Fabbiano (1990). We note that, while Ls is most
strongly correlated with Le, the total radio luminosity, both Lx and Lx/Ls are more strongly correlated with Lr_,
the core radio luminosity. These points support the argument (proposed by Fabbiano, Gioia, & Trinchieri 1989)
that radio cores in early-type galaxies are fueled by the hot ISM.

Subject headings: galaxies: elliptical and lenticular, cD -- galaxies: general -- galaxies: ISM -- X-rays: galaxies

1. INTRODUCTION tinelli & Gouguenheim 1977; Gallagher et al. 1977; White

The classic view of early-type (E and SO) galaxies, as put & Gardner 1977; Knapp, Gallagher, & Faber 1978; Fosbur
forth in the preface to the Hubble Atlas (Sandage 1961 ) is that al. 1978 ). However, all available evidence pointed toward
of pure Population II sttllar systems, with little or (ideally) n0 s'mall mass fractions for the ISM in early-type galaxies.
optical signatures of an interstellar medium (ISM). It was al- That tins was, in fact, a serious problem was pointed ou
ready clear by then that a significant fraction of luminous a landmark paper by Faber & Gallagher (1976). They nc
early-type galaxies do indeed possess some quantity of optical that the stellar populations of early-type galaxies are do
emission-line gas (Mayall 1939; Humason, Mayall, & Sandage hated by old stars, and that stars lose a significant amoun'

1956). Furthermore, as the angular resolution of radio tele- mass in the course of stellar evolution. Thus a typical ea
scopes improved throughout the 1950s and 1960s, it also be- type galaxy (La _ 101o/._) should contain _ 109 Mo of I:
came clear that many early-type galaxies are powerful radio if this material were not either converted into new stars (
continuum sources (e.g-, Maltby & Moffet 1962). It was thus considered a major sink either then or now) or swept from

• obvious that they contain relativistic electrons, moving under system by some internal or external process.
the influence of magnetic fields (e.g-, Hoyle 1960). By the For a number of years, theoretical work focused on the lal

1970S, a few early-type galaxies were also known to have some possibility, the main mechanisms considered being ram-l_
amount ofH I gas, based on 21 cm line observations (e.g., Bot- sure stripping due to interactions of the early-type galaxies

the intracluster medium of their host clusters (Gunn & G
Current address: Department of Physics and Astronomy, University 1972; Gisler 1976; Frank & Gisler 1976) and galactic wi]

of Alabama, Tuscaloosa, AL 35487. generated by energy input from supernovae (Johnson & t
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ABSTRACT

We have conducted bivariate and multivariate statistical analysis of data measuring the integrated lumi-
nosity, shape, and potential depth of the Einstein sample of early-type galaxies (presented by Fabbiano et al.
1992). We find significant correlations between the X-ray properties and the axial ratios (a/b) of our sample,
such that the roundest systems tend to have the highest L x and Lx/L m. The most radio-loud objects are also
the roundest. We confirm the assertion of Bender et al. (1989) that galaxies with high Lx are boxy (have
negative at). Both a/b and a, are correlated with Lt, but not with IRAS 12/an and 100/an luminosities. I/
There are strong correlations between Ix, Mg2, and _v in the sense that those systems with the deepest pot_a-/}
tial wells have the highest Lx and Mg 2. Thus the depth of the potential well appears to govern both tL__
ability to retain an ISM at the present epoch and to retain the enriched ejecta of early star formation bursts.
Both Lx/LB and L6 (the 6 cm radio luminosity) show threshold effects with ¢%, exhibiting sharp increases at
log (o,)_ 2.2. Finally, there is clearly an interrelationship between the various stellar and structural param-
eters: The scatter in the bivariate relationships between the shape parameters (a/b and at) and the depth
parameter (ao) is a function of abundance in the sense that, for a given at or a/b, the systems with the highest
a, also have the highest Mg 2. Furthermore, for a constant 0"p,disky galaxies tend to have higher Mg2 than
boxy ones. Alternatively, for a given abundance, boxy ellipticals tend to be more massive than disky ellipticals.
One possibility is that early-type galaxies of a given mass, originating from mergers (boxy ellipticals), have
/ower abundances than "primordial" (disky) early-type galaxies. Another is that disky inner isophotes axe due
not to primordial dissipational collapse, but to either the self-gravitating inner disks of captured spirals or the
dissipational collapse of new disk structures from the premerger ISM. The high measured nuclear Mg 2 values
would thus be due to enrichment from secondary bursts of star formation triggered by the merging event.

Subject headings: galaxies: elfiptical and lenticular, cD -- galaxies: ISM _ galaxies: structure --
X-rays: galaxies

|. INTRODUCTION

The connection between the structural and stellar properties
of galaxies and the nature of their interstellar medium ('ISM)
was first discussed by Spitzer (1954). The basic situation, as it
was understood ~35 years ago, was laid out by Sandage
(1961). Our ability to observe, and thus our understanding of,
the ISM has increased enormously since then. Current obser-
vational techniques allow us to collect data on the solid phase
of the ISM (dust grains), as well as gas phases ranging from
cold molecular cloud cores (T ~ 10 K, n ~ 106 cm -3) to X-
my-emitting gas (T ~ 106-_ K, n _>0.1 era-3). Our under-
standing of the relationships between ISM properties and the
structural and stellar properties of galaxies is thus undergoing
a concomitant rapid development.

Early-type (E and SO) galaxies, once considered devoid of
intestellar gas, are now known to possess rich and complex
ISM. Although many early-type galaxies exhibit the ISM
tracers more traditionally associated with late-type galaxies

Currentaddress: Departmentof Physics and Astronomy.Univertiv/of
AiabamgTuscakmsa,AL 35487.

2paal@hen.astr.ua.eda-
' pepi@c_barvare.ed,,
"kim@da.harvard.edu.
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(e.g., Huchtmeier & Richter 1989 and Eder, Giovane
Haynes 1991 for H I; Sage & Wrobel 1989 and Throuson
1989 for CO; Goudfrooij et al. 1994 for H_,; Knapp et al
for FIR), X-ray observations, beginning with the Ei
Observatory (Giacconi et al. 1979) have demonstrated th
ISM in luminous early-type galaxies is typically dominat
a hot ISM (see Fabhiano 1989 and references therein).

In the previous paper of. this series (Eskridge, Fabbia'
Kin 1995, hereafter P1), we presented an analysis of the
properties of the Einstein sample of early-type ga
(Fabhiano, Kim, & Trinchieri 1992, hereafter P0). The 1
results of P1 are as follows: In agreement with previous st
(see Fabbiano 1989 and references therein), we find a s
correlation between Lj and Lx, with a power-law slo
1.8 4- 0.1. However, this is actually a combination ofa si
relation for the fainter galaxies [log (Lx) -< 40.5] and a si
relation for the more luminous galaxies. This result is o
tent with previous work indicating that X-ray-faint earl3
galaxies do not retain any significant quantifies of hot
(Trinchieri & Fabhiano 1985; Fabbiano, Gioia, & Trill
1989, hereafter FGT). In this case, their X-ray emission s]
be dominated by the integrated output of discrete sc
similar to those found in the bulge of M31 (van Speybr¢_
aL 1979). The X-ray emission from more distant spiral bu]
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Abstract

We have extended our bivarlate and multivariate statistical analysis of

the Bin.stein sample of early-type galaxies (Fabbiano et al., 1992; Eskridge

d a/., 1995a,b) to include a consideration of the J¢ parameters defined by

Bender et al. (1992). The _ parameters are defined such that _1 scales

with virial mass, _3 scales with inner M/L ratio, and _2 is perpendicular

to both I¢1 and _s. The _1-_3 plane is essentially edge-on to the Ben-

der e$ aL (1992) formulation of the fundamental plane, and the parameter

6ss describes the scatter about that plane. We find that LB, LX, and L6

are all strongly correlated with _1- Partial Spearman rank analysis shows

these trends to be independent of the correlations between the luminosi-

ties. There are also significant bivariate trends of both Lx and L6 with _s.

Partial Spearman rank analysis indicates that the Lx-_cs is the dominant

one, thus arguing for a connection between the prominence of x-ray coronae

and the inner M/L. This suggests that galaxies with central excesses of

dark matter also have more massive extended dark matter halos, prodding

a mechanism for retaining larger amounts of hot ISM. We find evidence for

a correlation between Mg2 and 6_3 that is independent of correlations of

these two parameters with a_, and is enhanced when tested for constant a4.

The strengthening of the Mg2-6tcs correlation when tested for constant a4

indicates an underlying connection between the scatter about the funda-

mental plane, and the type II SN enrichment history of the central regions

of elliptical galaxies that is independent of the details of the central struc-

ture of individual galaxies. This suggests that the Mg2"--6_s trend is not

related to the Mg2 enhancements associated with kinematically decoupled

cores seen in some disky elliptical galaxies (e.g., Bender & Surma 1992). It

may be that systems with higher inner M/L¢ (at a given mass) were more

able to retain the metals generated in early epochs of star formation. Al-

ternatively, systems experiencing more active or prolonged star formation

may have produced an excess of baryonic dark matter from stellar remnants

that is reflected in their higher MlLe.

Subject Headings: galaxies: elliptical and lenticular, cD -- galaxies: evo-

lution- galaxies: general- galaxies: ISM- galaxies: structure-

x-rays: galaxies

I. Introduction

The Einstein sample of early-type galaxies (Fabbian0 et aI., 1992, hereafter P0) is

the largest currently available sample of E and SO galaxies observed in x-rays. There are

Einstein observations of 148 normal or nearly normal early-type galaxies in the sample.

We have been using this sample to explore the relationships of x-ray properties of E/S0

galaxies to other trar.ers of the ISM (Eskridge et a2., 1995a, hereafter P1) and to observables

related to the structure and stellar populations of the sample (Eskridge et a/., 1995b,
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ABSTRACT

We present the results of a deep observation of NGC 507 and NGC 499 with the

ROSAT PSPC. The X-ray emission of NGC 507 is extended at least out to 1000 arcsec

(458 kpc at a distance of 94.5 Mpc). The radial profile of X-ray surface brightness goes as

_x _" r -l"s outside the core region. The radial profile is a function of energy such that the

softer X-rays have a smaller core radius and a flatter slope. Spectral analysis reveals that

the emission temperature, with an average of 1 keV, peaks at an intermediate radius of 2-3

arcmin and falls toward the center (possibly decreases outward as well). The absorption

column density is consistent with the Galactic line-of-sight value. The X-ray emission

of NGC 499 is extended to 300 arcsec and suggests a similarly cooler core. The cooler

cores of NGC 507 and NGC 499 are strong evidence of the presence of cooling flows in

these galaxies. Assuming hydrostatic equilibrium outside the cooling radius, the estimated

mass to light ratio of NGC 507 is 97 4- 16 within 458 kpc, indicative of the presence of

a heavy halo. Similarly the mass to light ratio of NGC 499 is 89 4- 14 within 137 kpc.

Near the edge of the X-ray emitting region of NGC 507 we detect 19 soft, unresolved

sources. These sources do not have optical counterparts and are significantly in excess of

the expected number of background serendipitous sources. We speculate that they may

represent cooling clumps in the halo of NGC 507. If there are many undetected cooling

clumps distributed at large radii, then the radial profile of the X-ray surface brightness does

not directly reflect the potential, adding uncertainty to the measurement of the binding

mass; the gas mass could also be overestimated.
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Abstract

We present the results of ROSAT PSPC X-ray observations of NGC 4125

and NGC 3610. These two galaxies are among the best representatives of a newly

recognized class of elliptical galaxies that may be the product of recent mergers.

NGC 4125 shows two plumes or disks crossing at right angles; NGC 3610 has the

richest fine structure of all el]ipticals catalogued by Schweizer and Seitzer. Our X-ray

observations show that these galaxies do not retain large gaseous halos, contrary to

the suggested link between merging and X-ray brightness. Their X-ray luminosities

(0.1-2 keV) are in the range 104°-41ergs s -1, low compared with those of hot-gas-rich

ellipticals. The X-ray to optical ratio of NGC 3610 is in the range of those of X-ray

faint eUipticals, consistent with the value found for the bulge of M31, where the X-ray

emission is dominated by low-mass binaries; its X-ray spectrum is also comparable

with those of X-ray faint ellipticals, presenting significant very soft excess emission.

The X-ray to optical ratio of NGC 4125 is larger, and might suggest the presence of

some hot ISM. This suggestion is supported by the spectrum of NGC 4125, which

shows evidence of Fe L emission. This spectrum can be fitted with either a low

abundance single temperature l_ymond model, or with a two-temperature model

with solar abundances. Further work is needed to firmly resolve the question of

gaseous versus stellar X-ray emission in NGC 4125.
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Abstract

NGC 4382 is one of the E and SO galaxies detected with the lowest X-ray to

optical luminosity ratio. These galaxies have a peculiar X-ray (0.1-3 keV) spectrum,

with a significant excess of counts in the lowest spectral channels (< 1 keV) relative

to the spectral count distributions of X-ray brighter E and SO galaxies. Analyzing

the ROSAT PSPC observations of NGC 4382 (Fabbiano, Kim, and Trinchieri 1994),

it was unclear whether this soft excess were due to a real very soft component in

a multi-component spectrum, or reflected an extremely low metal abundance in a

isothermal hot gas. Our ASCA observations show that the low-abundance single-

temperature model does not fit well the X-ray spectrum, in agreement with our

previous suggestions. A better explanation is a composite spectrum with a very soft

component (,,_0.3 keV) in addition to a hard, likely stellar, component (_5 keV).

In this model, the abundance cannot be constrained. However, other more complex

spectral models cannot be excluded.



1. INTRODUCTION

The SO galaxy NGC 4382 is in the Virgo cluster, but it differs from other Virgo

early-type galaxies by being rather inconspicuous in X-rays. Its X-ray to optical flux

ratio is among the lowest detected in E and S0's and is a factor of --_100 smaller than

those of X-ray bright Virgo and field galaxies of similar optical luminosity (Figure 1).

Although its X-ray detection was first attributed to a hot ISM, and used to estimate

a binding mass (Forman, Jones and Tucker 1985), it was soon realized that the X-

ray emission may be dominated instead by a population of evolved stellar sources,

similar to those present in the bulge of M31 (Trinchieri, Fabbiano and Canizares 1986;

Canizares, Fabbiano and Trinchieri 1987). These sources have an X-ray spectrum

typically harder than that of the hot ISM of X-ray bright E and SOs (Fabbiano,

Trinchieri and Van Speybroeck 1987; Kim, Fabbiano and Trinchieri 1992a). Spectral

observations could therefore establish the nature of the X-ray emission of NGC 4382

and of other similarly X-ray faint E and SOs.

The results of spectral analyses based on Einstein and ROSAT data present

however a puzzling picture. Although NGC 4382 was too faint to warrant individual

analysis of its Einstein IPC data, it belongs to the sample of E and SOs selected

on the basis of their small X-ray to optical ratio, which have a peculiar soft excess

in their average Einstein spectral count distribution (Kim, Fabbiano and Trinchieri

1992b). This spectrum is very different both from the ,,_1 keV thermal spectrum

of X-ray bright E and SO galaxies, and from the harder spectrum expected from a

collection of low-mass binaries. Subsequent ROSAT PSPC observations (Fabbiano,

Kim and Trinchieri 1994) confirmed the Einstein results revealing a PSPC spectral

count distribution in NGC 4382 significantly different from those of X-ray bright

galaxies, with a relative excess of counts in the lower energy spectral channels.

However, the limited resolution and bandwidth of the PSPC do not allow us to

distinguish between different sets of emission models. The PSPC data can be equally

well fit with a very low metallicity plasma of kT-,_0.6 keV, a Bremsstrahlung emission

of the same kT, or a two component model consisting of a solar abundance plasma

with kT_0.2 keV plus a harder (>1 keV) component contributing similar amounts

of the emission (Fabbiano, Kim and Trinchieri 1994). More complicated models

however cannot be excluded (e.g., Pellegrini and Fabbiano 1994). Two or multi-

component models are more appealing in terms of physical plausibility (Fabbiano,

Kim and Trinchieri 1994), since they do not require assumptions about either a new

population of X-ray sources or the presence of a metal-free (therefore primordial)

plasma.

In order to establish the nature of the X-ray emission of this X-ray faint early

type galaxy, we observed NGC 4382 with ASCA (Tanaka, Inoue, and Holt 1994).

These higher spectral resolution data make the low-abundance single-temperature

model very unlikely and confirm the existence of a complex emission spectrum,



including a very softcomponent.

In section 2, we describe the ASCA observations and data reduction (§2.1)

and we present spectral analysis (§2.2) and results (§2.3). In section 3, we discuss the

nature of the very soft component and the implications of our results

2. X-RAY OBSERVATIONS AND DATA ANALYSIS

2.1. Data Screening and Background Determination

NGC 4382 was observed on 1994 May 27-28 with ASCA using both SIS (Burke

et al. 1991) and GIS (Ohashi et al. 1991). The observational log and basic parameters

of the galaxy are given in Table 1. The data were screened using the screening package

XSELECT/ASCASCREEN with the default selection criteria. This method excludes

data affected by the South Atlantic Anomaly, Earth occultation, and regions of low

geomagnetic rigidity. We also eliminated contamination by the bright Earth, removed

hot and flickering pixels for the SIS data, and applied rise-time rejection to exclude

particle events for the GIS data (Day et al. 1994). This screening was applied

separately to data collected in each instrument mode, i.e., to 6 data sets (two GIS

detectors; 1 and 2 CCD modes for two SIS detectors).

In Figure 2, images from the SIS1 2-CCD mode and GIS3 are shown; in Figure

3, the ROSAT PSPC image is shown for comparison. A strong source coincides with

the optical position of NGC 4382. The ROSAT PSPC observation revealed several

serendipitous sources within ,,45' of NGC 4382 (Fabbiano, Kim and Trinchieri 1994).

Sources are seen in the SIS and GIS images at 2.8' NW, 7.0' N, 13.7' NW, and

15.9' S (GIS only) from the center of NGC 4382. However, due to the poor point

response function of the ASCA detectors, the corresponding source shapes are much

broader and asymmetrical than in the PSPC. Furthermore, the surface brightness

distribution appears different in the different detectors, because of the misaligument

of the 4 telescopes associated with the detectors.

To generate spectra for further analysis, SIS data in 1 and 2 CCD modes were

combined because the telescope pointings were the same for these two modes. This

resulted in four data sets.

We used three different approaches for subtracting the field background

contribution from the source counts: (1) we derived the background locally in a source

free region in the same chip for the SIS data, and at a similar off-center distance

for the GIS; (2) for the SIS 2 CCD observations only, we derived the background

from the second - source free - chip; and (3) we used the 'deep blank sky data'

(several PV phase observations combined) provided by the ASCA GOF. There are

some disadvantages to all methods. In the first two methods, the background and

source regions have different detector responses and the current available spectral

package (XSPEC) ignores this difference. In the third method, although the source



and background regions are the same, the deep sky data do not correctly reflect

temporal and spatial variations of the background of the observed field. Nevertheless

the three estimates of the background produce consistent results in our spectral fitting

analysis, and therefore these potential problems do not affect our results. In the

following, we will report the results obtained with local background subtraction.

2.2 Spectral Analysis

The source spectrum was extracted from circles of radius 3' and 5' for the SIS

and GIS data respectively. In both cases the circle was centered on the emission

peak. These count extraction radii were determined by examining the radial profile

of X-ray surface brightness in each detector. The extraction parameters are given in

Table 2. We used XSPEC for the spectral analysis. For ASCA response files, the

redistribution matrix (RMF) v0.6 for SIS and v3.1 for GIS were obtained from the

ASCA GOF and the position-dependent effective area curve (ARF) for each detector

was generated at the source position. We have also tried a new version v0.8 for SIS

and v4.0 for GIS but no difference was found in our results. Prior to model fitting,

we rebinned the data so that each spectral bin contains at least 20 counts.

In table 2, we also list counts and count rates for each detector. The counts

rates are different for each detector, because of different detector responses. Spectral

fitting done with the same source normalization (i.e., emission measure) are consistent

with all the data except for that from GIS3. Counts in the GIS3 spectrum are larger

than expected with its detector response, due most likely to incomplete detector

calibration. An emission measure increase by a factor of 1.3 would be required to

reproduce the GIS3 spectrum. However, this inconsistency does not affect the spectral

fitting results because the SIS spectra mainly control the spectral fitting; therefore,

we use the same emission measure for simultaneous fit of SIS and GIS spectra. We

also fitted the SIS and GIS spectra separately. The results are similar except for the

normalizations.

We tested the effect of using slightly different source radii (e.g., 4' for SIS

and/or GIS) on the spectral results, performing the same analysis. The results do

not differ appreciably. We also repeated the analysis by explicitly including and

excluding the source at 2.8 ! NW from the center of NGC 4382. Again, we obtain

consistent results.

2.3 Results

The results of the spectral analysis are summarized in Table 3 and Figures

4-6. A single temperature Raymond model (a revised version of Raymond and Smith

1977) with fixed solar abundance gives a very poor fit to the data. Not only is X 2

too large, but also there is strong excess emission over the best fit model in the 0.5-1

keV energy range. This excess clearly indicates the presence of a secondary emission

component. Allowing the metal abundance to vary freely, we obtained a somewhat



lower minimum X 2. However, the reduction is not substantial, and moreover the

excess in 0.5-1 keV still exists (see Figure 5). In this case the best fit abundance is

almost zero, i.e., the model is close to pure Bremsstrahlung with no line emission.

Instead a two-component model, consisting of a low-temperature Raymond

thermal model with solar abundance plus a higher temperature Bremsstrahlung

model, fits the data well, without any significant residuals at any energies (see Figure

6). The significance of the secondary component determined by the F test is more

than 99.9% . The best fit kT parameters are 0.3 keV for the soft thermal emission

and ,-,6 keV for the Bremsstrahlung emission. The confidence ranges of the two

temperatures are well determined (Table 3). In particular the temperature of the soft

component is well constrained in a narrow range, 0.24-0.43 keV at 90% confidence

for 3 interesting parameters (Avni 1976). The temperature of the hard component is

constrained by the joint SIS-GIS fit to be between 3.6 and 10.4 keV. The acceptable

ranges of the abundance and absorption column density are not well determined. If

we use a Raymond model instead of a Bremsstrahlung model for the hard component,

the result is almost the same, because emission lines are not significant at this high

temperature in the detected energy range.

We has also used the ROSAT PSPC spectra taken from Fabbiano et al. (1994)

and jointly fit the ASCA and PSPC spectra. The PSPC instrument has a larger

effective area at the low energies, therefore the joint ASCA+PSPC fit can provide

narrower constraints on the absorption column density and soft component. The

results are listed in Table 3. While the best fit temperatures of the two components

are almost the same, the absorption column density is lower and well constrained.

If we let the abundance vary, the best fit abundance is 2.5 times solar, although

its error range is undetermined (> 10% solar at 90% confidence).

In Table 4, we list fluxes and luminosities of each emission component and the

total emission. These are absorption-corrected intrinsic quantities and determined

with the spectral parameters of the joint ASCA+PSPC fit. The soft component

contributes ,,,40% of the flux in the 0.1-2.0 keV range, consistent with the ROSAT

results for the same spectral model, but it contributes only ,,,20% of the total emission

in the 0.25-10 keV range. The total flux is 1.0 x 10 -12 ergs cm-2s -1 in the 0.25-10

keV range.

The best fit value of the absorption column density is 0.8 × 102°. The allowed

range at 90% confidence is 0.3-1.6 x 1020 (Table 3). The line of sight value, 2.7 × 10 _-°

(Table 1) is excluded at 99% confidence. This occurs only when we fit the PSPC

and ASCA spectra simultaneously. There may be some relative calibration problem
between the PSPC and ASCA. We have tried with different normalizations for the

two data sets, but the discrepancy still temP. If the fact that N_ is lower than

the galactic line of sight value is really significant, then a more complicated model

is required, e.g., adding another soft component. By adding 0.1 keV component, the
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allowed NH range is 0.2 - 4 x 102°.

For lower values of NH, the additional component contributes negligibly to

the total emission (i.e., the same as Table 3). For higher values NH, the additional

component increases to compensates for the larger absorption. This may suggest

multi-temperature soft emission. However, this may be overinterpretation of the
current data.

We considered the uncertainties in calibration and plasma emission codes

to better understand the robustness of our results. The ASCA instruments are

known to have some calibration problem. In particular, ASCA spectra of several

galaxy clusters indicate large amount of excess absorption which is inconsistent with

previous observations (L. David and A. Prestwich 1994, private communication; see

also ASCANEWS communication of Dec. 11 1995). However, this calibration error

will not remove the need for a very soft component, because our spectra have excess

soft counts, not the deficit expected at the soft energies because of this calibration

problem. Another known problem is that currently available plasma emission codes

produce too much emission at the Fe-L 4 to 2 transitions at _1.5 keV (N. Brickhouse

1994, private communication; Fabian et al. 1994). Again this ,,_1.5 keV line emission

will not significantly affect the existence of very soft component. Even in a extreme

case where all the emission lines are uncertain, the spectral fit with a single component

model with almost zero abundance (therefore no lines) is still not acceptable.

3. DISCUSSION

Our ASCA observations of NGC 4382 help us constrain models of the X-ray

emission of this galaxy, and by inference of low-X-ray luminosity early-type galaxies.

The results of the spectral fit exclude a single-temperature low-metalhcity model, and

point to a multi-component emission, consisting of at least two components: a hard

component (kT,_4-13 keV), and a very soft component (kT-,_0.2-0.4 keV). The two

components contribute to the flux in similar amounts in the 0.1-2 keV band, consistent

with the ROSAT results (Fabbiano, Kim and Trinchieri 1994), but in a wider energy

band (0.25-10 keV), the soft component amounts to only 1/4 of the total emission.

An even softer component (£ 0.1 keV) may be present, but the present data and SIS

soft-band calibration make this possibility rather uncertain.

The existence of a hard component in the emission of E and SO galaxies, due

to the integrated emission of low mass X-ray binaries, had been postulated early on

(Trinchieri and Fabbiano 1985). This component was suggested by comparisons of

the Lx - LB dependence of E and SOs with that of Spirals (Trinchieri and Fabbiano

1985; Canizares, Fabbiano and Trinchieri 1987; Fabbiano, Gioia and Trinchieri 1989;

Eskridge, Fabbiano and Kim 1995), and was first glimpsed in the co-added Einstein

IPC spectra of X-ray faint E and SOs (Kim, Fabbiano and Trinchieri 1992a and b).

This component has now been detected with ASCA in virtually all early-type galaxies
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(Matsushita et al. 1994),and its luminosity scalesapproximately linearly with the
optical luminosity (T. Ohashi 1994, private communication), pointing to a stellar
origin, as seenin spiral galaxies(Fabbianoand Trinchieri 1985;Fabbiano,Gioia and
Trinchieri 1988). The X-ray to optical ratio of this componentis consistentwith that
of spiral galaxies and in particular with bulge-dominatedspirals, where the X-ray
emissionis likely to be dominated by a population of low-massbinaries (e.g., M31,
Trinchieri and Fabbiano1991).

The existenceof a very soft emissionspectrum in X-ray faint E and SOgalaxies
was first seenwith the Einstein IPC (Kim et al. 1992b), and later confirmed with

the ROSAT PSPC (Fabbiano et al. 1994; Fabbiano and Schweizer 1995). ASCA

confirms that this emission is truly due to a very soft emission component in a multi-

component spectrum. The very soft component, characterized by _0.3 keV thermal

emission, emits 2 x 104° erg sec -I in 0.25-10 keV (see Table 4).

Kim et al. (1992), Fabbiano et al. (1994) and Pellegrini and Fabbiano (1994)

considered possible candidates for the very soft component. It is possible that X-

ray faint E and SO do not retain a hot ISM. In this case, candidates include stellar

sources, such as M star coronae (Schmitt et al. 1990), KS CVn (Dempsey et al. 1993),

and supersoft sources such as those discovered with ROSAT in nearby galaxies (e.g.,

Greiner, Hasinger and Kahabka 1991; Kahabka, Pietsch and Hasinger 1994). If the

very soft component is totally or in part related with stellar sources, it should exist

in all early type galaxies, although its contribution may be relatively small in X-ray

bright early type galaxies where strong hot gaseous emission (,,_1 keV) dominates.

However, hydrodynamic simulations (Pellegrini and Fabbiano 1994) suggest that the

X-ray emission of X-ray faint E and SO galaxies may be more complex than the simple

two-temperature model we have here fitted to the data. X-ray faint early type galaxies

may contain a hot ISM which is cooler than that present in X-ray bright E and SOs,

depending on the potential and SNIa rate of the galaxy. In particular, Pellegrini and

Fabbiano (1994) showed that the ROSAT PSPC spectrum of the X-ray faint E galaxy

NGC 4365 could be modeled with a three component model including very soft and

hard stellar components, plus a hot ISM component. These data were well fitted with

a two-component thermal model, as is it the case for our ASCA data of NGC 4382. It

may be interesting to do similar model comparisons for NGC 4382, but this is beyond

the scope of the present paper. The spherically symmetric Pellegrini and Fabbiano

(1994) models cannot be immediately adapted to an SO galaxy.

4. CONCLUSIONS

We observed NGC 4382, one of X-ray faint early type galaxies, with ASCA

SIS and GIS for ,-_35 ksec. The X-ray flux is 1.0 × 10 -12 erg sec -1 cm -2 in 0.25 - 10

keV, consistent with the previous ROSAT PSPC observations. The ASCA data allow

us to reject a low-abundance single-temperature model for this galaxy. The data is

well fitted with a two-component model consisting of a very soft component (,,_0.3
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keV) in addition to a hard stellar component(,-,6keV), possibly dueto the low-mass
X-ray binary population of this galaxy (e.g.,seebulgeof M31). The acceptablerange
of temperature (90% confidence)is 0.2-0.4keV and 4-13 keV for the soft and hard
components,respectively. The relative flux of the very soft component is about 1/2
of total X-ray emission in 0.1-2 keV rangeand 1/4 in 0.25-10keV range. The data
could alsobe fitted with more complexmodels. Thesedata, while excluding a single
thermal component low-abundancemodel, and requiring multi-component models,
cannot be usedto determine the metal abundanceof the soft optically thin emission.
Solar valuescannot be excluded.

We proposeto follow up this work with careful re-analysis of the ASCA data

of E and SO galaxies, once these become accessible in the public domain. AXAF

data will be able to disentangle the spectral properties of these galaxies from spatial

variations in the ISM and therefore give us a more realistic picture.
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Table 1

Basic parameters

P,A (J2000)o
DEC (J2000)a
B_ (mag) a

D (Mpc) b

D25 (arcsec) a

NH (cm-2)c
ASCA Observed Date

ASCA Net Good Time (sec)

Log Fx (IPC) erg sec -1 cm -2 c

Log Fx (PSPC) erg sec -1 cm -2 I

12 25 24.7

18 11 27

9.99

27.0

425

2.7 x 1020

May 27-28, 1994

32000-35000 d

6.0 x 10 -13 4- 0.5

7.3 x 10 -13 4- 0.5

a. Right Ascension (RA), declination (DEC), total face-on B magnitude (B_,), and major

isophotal diameter measured at B = 25 magnitude arcsec-2(D2s) taken from de Vaucouleurs

et al. 1991 (RC3)

b. Distance from Fabbiano et al. 1992.

c. Galactic line of sight H column density from Starks et al. 1992.

d. The net good times are 32.9ks for SIS0, 32.2ks for SIS1, and 35.0ks for GIS2 and GIS3.

e. IPC flux from Fabbiano et al. 1992. Fluxes were estimated in a energy range of 0.2-4.0

keV and kT=lkeV was assumed. The count extraction radus is r=240" and the error is a

statistical one.

f. PSPC flux from Fabbiano et al. 1994. Fluxes were estimated in a energy range of 0.1-2.0

keV and a two-component model was used. The count extraction radius is r=220" and the

error is a statistical one.
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Table 2

Counts

X Y r Exposure Counts bkgd net rate

(det)a., (") (see) (cts/ks)
f •

SIS0 113 111 180 32903.26 1178 405 773 23.49 ± 1.18

SIS1 111 118 180 32158.98 967 436 531 16.51 ± 1.13

GIS2 106 115 300 34983.24 876 421 455 13.01 ± 0.93

GIS3 109 113 300 34927.24 1073 420 653 18.70 ± 1.02

a. unbinned detector coordinates for GIS and binned (by factor of 4) detector coordinates

for SIS.

Background region (in detector coordinates):

SIS0 BOX(102.50,68.50,79.00,21.00)+BOX(71,104,79.00,22.00,90.000)

SIS1 BOX(102.50,68.50,79.00,21.00)+BOX(71,104,79.00,22.00,90.000)

GIS2 CIRCLE(160,139,30)

GIS3 CIRCLE(157,140,30)
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Table 3
SpectralFit

1 Temperature (with solar abundance a)

NH kT X 2 degrees of

(1020 cm -2) (keV) freedom

SIS 0 5.1 197 79

GIS 0 4.2 113 88

SIS+GIS 0 4.7 310 170

SIS+GIS+PSPC 0.26 4.6 356 192

1 Temperature (with varying abundance)

N_z kT Z X 2 degrees of

(1020 cm -2) (keV) (solar) freedom

SIS 0 2.5 0 161 78

GIS 0 4.4 0.03 107 87

SIS+GIS 0 3.3 0 274 169

SIS+GIS+PSPC 0.73 3.1 0 311 191

Ray + Brem (with solar abundance a)

NH b kT1 b kT2 b X 2 degrees of

(1020 cm -2) (keV) (keV) freedom

SIS 6.7 (< 27.2) 0.30 (0.23-0.42) 4.9 (2.6-13.2) 88 77

GIS 11 (< 123) 0.30 (0.11-0.82) 6.1 (2.5-16.5) 87 86

SIS÷GIS 6.9 (< 25.8) 0.31 (0.24-0.43) 5.6 (3.6-10.4) 179 168

SIS+GIS÷PSPC c 0.80 (0.26-1.61) 0.33 (0.27-0.41) 6.4 (4.3-12.8) 196 190

a. The solar abundance is from Anders and Grevesse (1989), i.e., [Fe]/[H] = 4.68 x 10 -5.

b. The acceptable range is in 90% confidence for 3 interesting parameters.

c. Varying the abundance, we obtain the best fit Z=2.45 ( > 10%) solar at 90% confidence.
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Table 4
Flux and Luminositya

soft component hard component total emission

Fx(0.1-2 keV) 2.5 4- 0.5 3.8 ± 0.7 6.3 i 1.3

Fx(0.2-4keV) 2.2 ± 0.5 5.5 + 1.1 7.8 =h 1.6

Fx(0.25-10keV) 2.2 =h 0.5 8.0 4- 1.5 10.1 :h 2.0

Lx(0.1-2keV) 2.1 4- 0.5 3.3 4- 0.6 5.5 4- 1.1

Lx(0.2-4keV) 2.0 4- 0.4 4.8 4- 0.9 6.8 4- 1.4

Lx(0.25-10keV) 1.9 4- 0.4 7.0 4- 1.3 8.8 4- 1.8

a. The flux is in unit of 10 -13 erg sec -1 cm -2 and luminosity is in unit of 1040 erg

sec -1. The flux and luminosity are absorption-corrected intrinsic quantities. Distance -- 27

Mpc. The error (1 a) is calculated by estimating the acceptable range of normalization. The

statistical error is negligible.

12



FIGURE CAPTIONS

Figure 1: The Lx - LB diagram of E and S0 galaxies. All data are from

Fabbiano, Kim and Trinchieri (1992). The diagonal lines delimit the four

spectral Groups (1-4) of Kim, Fabbiano and Trinchieri (1992b). Groups 4

and 3 galaxies have ,,_1 keV average spectra in Einstein. Group 2 have hard

spectra (> 2 keV), and Group 1 have a spectrum that can be fitted with a

mixture of a hard and a very soft (,-_0.2 keV) component. The locus of spiral

galaxies and spiral bulges (dominated by discrete binary sources) in this plot

corresponds with the Group 1 and 2 regions. The circle and triangle indicate

detections and upper limits.

Figure 2: ASCA X-ray images. The images were taken (a) in a SIS1 2-ccd

mode and (b) with GIS3. Both images were smoothed with a Gaussian of a =
30".

Figure 3: ROSAT PSPC image of NGC 4382. The ellipse indicates the optical

galaxy at 25 B magnitude isophote. The image was smoothed with a Gaussian
of a = 30".

Figure 4: Joint fit of 2 SIS and 2 GIS spectra. (a) SIS0; (b) SISl; (c) GIS2; and

(d) GIS3. The solid histogram indicates the best-fit one component Raymond

thermal model with a fixed solar abundance. The bottom panel shows _X =

(observed - predicted) / (observed error).

Figure 5: Same as Figure 3 except for varying the abundance.

Figure 6: Same as Figure 3 except for a two component model.

Figure 7: X 2 contour plots for (a) kT1 and kT2, (b) kT1 and Nil, and (c)

kT2 and Nil. The 3 contours are 68%, 90% and 99% confidence levels with 3

interesting parameters.
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ABSTRACT

ROSAT PSPC observations of NGC 4636 have provided a deep image of the galaxy and _ surroundings,
which reveal the presence of emi_on well outside the optical galaxy. The source emission is measured out to
• ~ I8', where the imtrument supporl structure prevents us at this time from following it farther out. The
nature of this emission is not fully understood, but could bc evidence that thc Virgo duster gas cxtcnds as far
out as this galaxy (>3 Mpc horn M87).

Spectral analysis of the X.ray emitsion suggests a relatively cool (kT _ 0.5-0.9 kcV) interstellar medium,
with temperatures increasing with radius. However, the detal'led properties of the interstellar gas cannot be
unambiguously dc_raincd with the pre_t dala, sinoc the results we obtain depend strongly on thc choice of
the special model. Comparison of the spectral distributions in concentric annuli clearly indicates significant
diffcrcnces with radius, which can be parameterized as a general increase of the tcrnperature. For low cosmic
abundance models, kT varies from ,,,0_55 keV in the inner 1' to -,-0.8 kcV at r -,, 6'-8: Outside 8' the avecage
temperatere is higher than in the inner region (kT _ 0.8-1.2 keV) and the low.energy absorption is dsnifi-
cantly lower. For 100% cosmic abundance and galactic llne.-of-sight absorption, multi-temperature fits are
required, suggesting the possibility that the intersteRar medium is inhomogeneous.

Subject headia#s: gataxk's: cluste'r_: individual (V'rrgo)-- galaxlcs: individual (]qGC 4636) -- i_daxi_: ISM
X-rays- galaxies

t. INTRODUCTION

Early Einstein observations of normal galaxies in the Virgo
cluster have suggested that the e=nission of the brightest ellip-
ticals could be attributed to the presence of hot gas radiating at
kT _ 1 keV (Forraan et at. 1979; Trinchieri, Fabbiano, &
Can_ hereafter TFC_ Both the high X-ray luminosities
and the soft spectra observed in the X-ray bright early-type
galaxies have indicated the presenceof an interstellar medium
in these ob_ previousIy thought to be devoid of gas (see
Fabbiano 1989 and rdca_nces therein).

discovery has provided a potentially powerful tool for
estimating galaxy masses (M) out to radii well outside the
central regions, to which optical spectroscopic data have ib_-
e.rally been restricted, and has ted to the suggestion that large
amounts of dark matter are a common feature of carly-type
systems (Forman, Joueg & Tucker 1985; Fabian ct al. 1986).
However, the combined spatial and spectral resolution of the
Einstein X-ray data was not sufficient to yield an unequivocal
determination of the masses in early-type galaxies (sec "IFC).
In principle X-ray data could determine the temperature at
each radius, and in particular at large radii whcrc mass men-

Currently aE Ib¢ Chaervato¢io As_ro_om_o di Bmra Via Blx,ra 28, 20121
Mi._mo, Italy.

surements are more interestia& Instead, only a gas t_a-
perature averaged over the entire source could be derived with
the E_nstetn dam, and even this mean d¢lx'nded on the assump-
tion of a given (solar) metal abundauce_ Only estimates of
radial temperature distributions have been attempted in a _w
cases (see Forman ct aL 1985). Improved measurements are
important. For example, a radially increasing temperature
could indicate the presence of an external pressure and conse-
quently relax the need for dark matter to confine the hot inter-
stedlar medium (e.g., Cowie & Binney 1977; Vedder, Trester, &
Ca_i=arm 198S;Benin, Plgnatelli, & Saglla 1993),

Moreover the determination of the radial extent of the gas
and to a lesser degree of the density gradi_at at Iarge radii are
also uncertain. In particular, in the observatiom of NGC 4636,
cmlssion obscrved at galactoc_ntrlcradii of ,,.6=7" could have
been due to an instrumental feature, and thus could not he
unambiguomly attributed to the _ource. In other cases, con-
tamination from the emission of unconnected sources in the
field could not he discarded.Theseuncertainties reflect directly
in the evaluation of M.

To address this iss-ae, deep observations of some of the more
luminous galaxies have been obtained with the PSPC (Position
Sensitive Proportional Counter) aboard the ROSAT sateUite
(Truemper 1983; Pfeffermann et aL 1987). The ROSAT band
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ABSTRACT

We present the results of ROgAT PSPC observations of the two early.type galaxies NGC 4365 and NCH2
4382. The_e galaxies are among thoee observedwith Einatein to have the Iowat X-ray to optical flux ratio, of
¢arly-type $alaxies. The PSPC data show that for radii r > 50" the radial distributions of the X-ray surface
brightness are consistent with the opera! distributions of King (I978). We also find that these galaxies have
X-ray spectra significandy differem from those observedin X-ray-bright ellipticals, with a relative _ of
counts detected in the softest spectral channels. Thb confirms earlier Ein_¢in results. The characteristica of the
ROSAT PSPC do not allow us to dis_minau: between posu'ble spectralmodels. If we adopt a two-
component thermal model on the grounds of physical plaus/bility, we find that the spectral data can be fitted
with a very soft optically thin componenL with kT _ 0.2 keY, and a hard component with kT > (1.0-1.5) keY.
The hard component has a luminosity consistent with that expected from the integrated embsion of a popu-
lation of low-mass X-ray binaries in these galaxies; the nature of the very soft component is more speculative.
Candidates include the coronal emission of late-type stars, supersoftX-ray souroes, RS CYv'n,and perhapl a
hot ISM. Alternatively. the spectral data may be fitted with a 0.6--I keV brcmsstrahlung spectrum (_xpommtial
plus Gaunt), and may suggest the presence of a totally new population of X-ray sourc_
Subject headin#a: galaxies: dlipdcal and tentieular, cD -- galaxies: individual ('NGC 4365, NGC 4382)

radiation mechanisms: nonthermal -- radiation mechanisms: thermal -- X-rays: gala_s

i. IN'tRODUC'TION

Observations of early-type galaxies with the Einstefnsatellite
(Cmcconi et al. 1979) have revealed that these galaxies can
retain large amounts (up to _!0 tt Mo) of hot (T .,- 10* K)
interstellar medium ('ISM; Forman, Jones,& Tucker 1985,
Canizares, Fabbiano, & Trinchieri 1987). However, it was also
observedthat early-type galaxies of the same optical lumi-
nosity can have X-ray lumino61ties differing up to a factor of
~ 1(30(e.g., Fahbiano, Kim, & Trinchieri 1992). While there are

convincing observational and theoretical arguments suggest-
ing that the X-ray emission of X-ray bright galaxies is domi_
naled by tbe hot ISM. the origin of the emission of X-ray faint
galaxies is lasl certain (Canlza_ et aL 1987; Fabbiano, Gioia,
& Trincahi_ 1989; see Fabbiano 1989 and references therein).
These galaxies may have not bccn able to retain their hot ISM,
which may have been either expelled through winds (e.._ Ciotti
ct aL 1991 ; David, Fr_man, & Jones 1991) or stripped through
interaction with a hot lntra¢luster Medium (e.g., White &
Sarazin 1991),

A recent analysis of the Ein._ein IPC data of elliptical gal-
axies in different ranges of X-ray to optical ratio (Lx/L,) has
shown significant differences in the average spectra] properties
or the X-ray emiss/on (Kim. Fabbiano, & TrincMeri 1992b_
which may support these concl_ions. While X-ray bright gal-
axies['log (Lx/Lj) > 30.3, wherc LrdLj is in eegs s-_IL_ t]
have average spectra that can be fitted with thermal Raymond

mode9W.!!h_,_ :..t..k.cv, wi_h.,.,_.._,:_._'__,.L_JL._L_...._.,P___

axles, which are s/gnifr.antly harder (kT > 3 keV), ami whose
emi_on is dominated by populations of evolved X-ray tourees
(so= Fabbiano 1989). However, an unexpected very soft com-
ponem or the X-ray emission h apparent in the average X-ray
spectrum of the X-ray faintest galaxies [Group I in Kim et al.
1992b; log (Lx/La)-29.3-30.0] as a significant excessor
counts in the lowest spectral channels.

To confirm the existence of this very soft emism_onin X-ray
faint early-type galaxies, and to determine its characted_tics,
we have observed two of these galaxies, NGC 4365 and NGC
4382, with the ROSAT _Frfanper 1983) PSPC (Pfeffermann et
aL 1987). In this paper, we report the results of these observa-
tions, and we discuss briefly their implicatior_In the compan-
ion papex (PeUegrini & Fabbiano 1994), these results are
compared with detailed model predictions.

2. OBSERVATIONS,DATA ANALYSISAND P._L_LTS

Table l summarizes the characteristics of our two X.ray
faint galaxies and $_ves the ROSAT PSPC observation log.

2.1, Contour Plo_s

The data were analyzed using the"xray"packageof IRAF,
developed at SAO for the analysis ofX-raydata.FiguresJa
and lb show contour_ plots of the cemral part, of the two
PSPC images, containing the target galaxie._ Data from spec-
tral channels 7 to 240 were used. The PSPC data we_ binned
in 5" pixels and mmothed with 1_" Oamsians to obtain 0a:se
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ABSTRACT

A recent reanalysis of F.insteln data, and new ROSAT observations, have revealed the presence of at least

two components in the X.ray spectra of X-ray faint early.type galaxies: a relatively hard component (kT > 13
keV), and a veT)' soft component (kT ~ 0.2-0.3 keV). In this paper we address the problem of the nature of
the very soft component, and whether it can he dee to a hot iute._tellar medium 0SM3, or is most h'kely

orisJnatcd by the collective emission or very soft stellar sources. To this purpose, hydrodynamieal orolufionary
sequences for thc secular behavior of gas flows in ellipticais have been performed, varying the Type la super-
novae rate of explosion, and the dark matter amount and distribution. The results are comlmred with the

observational X-ray data: the average Ein._ein sggctram for six X-ray faint early-type galaxies (among which
are NGC 4365 and NGC 4697). and the spectrum obtained by the ROSAT pointed observation of NGC 4365.
The very so[_ component could be entirely explained with a hot ISM only in galaxies such as NC-C 4697, i.e,

when the depth of the potential welL--on which the average ISM temperature strongly depends--is quite
shallow; in NGC 4365 a diffuse hot ISM would have a temperature larger than that of the very soft com-

ponem, because of the deeper potential well. So. in NGC 4365 the softest contribution to the X-ray emis_on
comes certainly from stellar sources. As stellar soft X-ray emitters, we consider late-t_Ve stellar coromte, super-
soft sources _uch as those discovered by ROSAT in the Mageltanic Clouds and M31, and RS CVn systems.

All these candidates can be substantial contributors to the very soft emission, though none of them, taken

separately, plausibly accounts entirely for its properties.
We finally present a model for the X.ray emission of NGC 4365, to reproduce in detail the results of the

ROSAT pointed observation, including PSPC spectrum and radial surface brightneas dis_r,_oudon The present
data may suggest that the X-ray surfa_ brighmess is mort: extended than the optical profile. In this case, a

straightforward explanation in terms of stellar sources could be not sarisfactoD.. The evadable data can be
better explained with three different contributions: a very soft component of stellar origin, a hard compolgnt

from X-ray binaries, and a ~0.6 keV hot ISM. The latter can explain the extended X-ray sin-face brlghtne_
profde., ;.f the galaxy has a dark-to-lumirtous mass ratio of 9, with the dark matter very broadi'y distribuled,
and a SN la explosion rate of ~0.6 the Taramann rate.

Subjecg head,rigs: galaxies: elliptical and lenticular, cD -- radiation mechanisms: thermal _ X.rays: galaxies

I. INTRODUCTION

After the launch of the Eia_eta sate.l[;.te (Giagconi et at.
1979), it was first realL_d through X-ray measurements that

elliptical galaxies _y retain a large amount (_ lOS-lO _ t M_)
of hot (T ~ l0 _ K) imerstellar gas (e.g_ Forman, Jones, &
Tucker 1985: Canizares, Fabbiano. & Trinchiefi I987; see the

review of Fabbiano 1989). This conclusion was supported by
the presence of X.ray emission displaced from the optical body

in some cases, by the relatively soft ( ~ l keV) X-ray spectra of
X-ray bright ellipticaL_, and by the steep _oerelation between

X-ray and optical hrminosity (L_ _c L_t's_z), see Figure I. In
contrast in spiral galaxies, where the X.ray emission can be

attributed to a population of evolved stellar sources (see Fab-
biano 1989, and rcfcreno_ therein), the X.ray spectra tend to
b_ harder, and Lx oc L.. Besides suggesting a steep relation-

ship between Lx and L,,, the Lx-L _ diagram of early-type

galaxies shows a substantial amount of scatter: the rang,¢ ofL x

Lx--L) diagram, including numerk:al simulations for the

behavior o( sas flows fed by stdlar mass loss and healed to
X-ray temperatures by type la separnovae (SN h's; see the
r_ of Fabbiano 1989; Loewenstein & Mathews 1987;

Sarazin & White 1987, 1988; D'Ereole et al. 1989; David,
Forman, & Jones 1991; Ciotti et al. 1991, hereafter CDPg).

The most su¢cesdul models are tho_ expla/nlng the _,atter in
the Lx-Lj diagram in terms of different dynamical phases for

the hot gas flows, ranging from winds to inflows (CDPR).
These authors, a_uming that the SN [a explo_on rate is

declining with time slightlyfaster than the rate with which
mass is lost by sIars, find _hat in the beginning the enef_
released by SN la*s can drive the gas out of the galaxies

through a supersonic wind. As the collective SN la's energy
input decrease.t, a subsonic ou_ow takes place., tnd this grad-

oally slows down until a central cooling catastrophe leads to
the onset d an inflow. An attractive feature of this scenario is

o .......



Chl a molecules and the two xanthophylls, seem to represent a
central core of the complex. The internal 2-fold symmetry of
this arran.gement probably arose through duplication of a gene
encoding an ancestral single-span polypcptide which proved
effective in bringing Chl a into close contact with carotenoids.
Helix C and the loops on the membrane surface show greater
sequence variability within the family of Chl a/b binding

Receive_ 23 November 1993; accepte¢l 10 January 1994.

1 Cashmore, A. R. Pro(:, ram. Acad. Sc/. U.$A. 81, 2960-2964 (1984).
2- M;chel, H. P., Grifnn, P, R. Shabanowitz, J,, Hunt, D. F, & BennetL J. J, bioL Chem.

17584-17591 (1991).
3. De_senhofer, J. El)p, 0., Mikl, K. Huber, R. & Michel, H, 2. _. B/oL 2,80, 385-398

(1984).
4. Deisenhofor, J., EDD, 0,, Miki, K.. Huber, Ro& Michel, H. Nature _ 618-624 (1985_,.
5. KrauSS,N. et eL N_ture a6t, 326-331 (1993).

6. KOhlbrandt, W. & WB_,. O, N. Nature _1_, 130-134 (1991).
7. KOhlbrandL W. & Downing. K. H. J. motet. B_oL2tD7, 823-.828 (1989}.

8. Wan& D, N. & KOhlbrandL W. J. rnolec. B/oL :UL?, 691-699 (1991).
9. Wang, D. N, & KOhlbrendl, W. BlofY_s. J, _ 287-297 (1992),

10. Unwin, P. N. T, & Henderson. R. J. mo/ec. B/ol. N, 425-440 (1975).
11, Henderao_, R., Baldwin, J. M., Downing. K, H., LepsuK, J. & Zemiin, F. Uttr_m/o'oscGoy 4l,

147-178 (1986).
t2. Hen_ersorL R. e/aL J. mo_ec. _oL 2_L3, 899-929 (1990).
13. Fujiyoshi, Y. at a/. U/tram_croscopy I_, 241-251 (1991).
l& Gtaeser, R, M., Tong. L. & Kim, S.-H. URram/croscopy 2"/, 307-318 (1989).
15. BrfJnger, k. r. J.'_, B/OL 205, 803-816 (1988).
16. Hoffmann, N. E. et al. Proc, hath. AcacL So'. U.SJ_. 114, 8844-.8848 (1986).

17, /ntematio_al Tables forX.rayCeyslMlograjohyVol. IV 71-175 (Ky_och, Birmini_m, 1974).
IS. NuSsberger. S., D_R, K., Wang. D. N. & KOhlbrandt, W. J. mo/ec. B/oL 2:12, 347-356 (1993).
19. Mullet1 J. J, bloL Chem. _ 9941-9948 (1983).
20, Bennett, J. Eut. J. B/ochem. 99, 133-137 (1979).
21. $ieferrnann-Harms, D. Bioch/m, bioM_ys. Acta _ 325-355 (1985).
22. Bassi, R., Plneau, B.. Dair_se, P. & Ma_uam't, J. Eur. 1 Biochem. _ 297-303 (1993).

23. Juhler, R. K., Andmasson, E.. Yu, S. G, & NbeRSSon, P. A. Pho_os_h. Re$. SIS, 171-178
(19931.

:>4. Picorel, R., Bakhtiarl, M, Lu, T., Coeto_. T, M, & Seibert, M. $, Photochem. PhotobloL INS,

263-270 (1992).
25. Plurnley, F. G, & Schmidt, G. W. Pro(:, nal[n. Acsd. Sci, U,S.A. 84, 146-150 (1987).
26. Paulsen, H, RGmicr, U. & ROdiger, W. Planta _ 204-211 (1990).
27. Demmig-AOams, B. & Adams, W. W, A. Rev. Ptan! PhysloL 43, 599--626 (1992).
28. Keams, D. It. Cnem. Rev. "11, 395-427 (1971).
29, Cogdefl, R. J. & Frank, H. A. Biochim. biophys. AC_a IDI, 63-79 (1987).
30. Mauring. K.. Renge. L. Sara. P. & Avarmas, R. SI)ectrochim. Acta _ 507-529 (1987).

proteins 4_. It is striking that the Chl b molecules in the complex

seem to be bound by these parts of the polypcptide, which may
be later additions. This may account for the variable Chl b con-
tent of related antenna complexes 42. The atomic model of LHC-
II presented here will bc refined in future studies at higher resolu-
tion, to contribute to a more complete understanding of photo-
synthesis which supports all life on Earth. []

31. Dexter, D, L J. chem. Phys. 21, 836-850 (1953}.
32. Eats, D, D. Costn_, F_ W., Alberte, R. S., Mets, L & Reining. G. R. J. phys, Chem, I)3,

g27_--_275 lJgBg_
33. P_ls$on, L 0., Spangfort, M. D., Gulbinas, V. & Gillbro, T. FEBS Left. (in the Dress),
34. Ide, J. P., Klug, D. R, KOhlbrenO't, W,. Georgi, L. & Porter, G. Btochirn. biophy_;. Acta 1193,

349-.364 (1987),
35. Bowers, P. G, & Porter, G. P_PC.R. Soc. _ 435--441 (1967_
36. Kramer, H. & Mathis, P, 8iochirn. blophy$. Ac:a IHk_ 319-329 (1980).
37. van der Vos, R.. Carbonera. D, & Hoff, A. J. A/>,o/. mag. Res. 2, 179-202 (1991}.
38. Porr_, R. J., ThomDson, W. A. & Kfiedeff_nn, P. E, _oct_m. _oDhys. Acta IT_t 384-394

(19_9).
39. Matthews. B., Fe_na, R. E., Bolog_esi, M, C., _>chmid, M. F. & OIson, J. M ]. mo/ec, B/OL

259-285 (1979).
40. Eccles, J. & Honig. B, Pro(:, hath, Acad. Sc/, U.S.A, IM), 4959--4962 (1983).
41. Green, B. R., P_chersk'y.E. & K/o_pstech, K. Tre_ds biochem. ScJ. 18, 181-186 (1991)_
42. Peter, G. F. & Thomber, J. P. J. bloL C/lern. _ 16745-16754 (1991).
43, Hi,er, R, G., Wrench, P. M., Gooley, A, P., Sheebr;dge. G, & Breton, J, Phol:oc_em. Pt_otob/,oL

aT, 125-131 (1993).
44. Ceska. T, A. J. algol. Crystallog. _, 200-201 {199,4).
45. Bff,nger, A. T., Kurlyan, K. & Ka_lu_, M. Sc/ence _ 458-460 (1987),
46. Born, M. & Wolf, E. princ_/es of O_ot/cs5th edn 333-334 (Pergamon, Oxford, 1975).

47. Booy. F. P. & Pawtey, J. B. URramicroscow41, 273-280 (1993).
48. Bu_ H..J., Wang. O, N., Han_t_, P. K. & K_ltlbran_ W. Utt_m/c_3$co_" _1, 307-328

(1991).
49. Fujiyoshi, Y., Kobayashi, T., Ishizuka, T., Uyeda, N, & Hareda, Y. Ultramicro;copy a, 459-

468 (198o),
:30. Evars, P, R. in Ctyatattographic Com_'_'ng Vol. 5 (eds Moras, D., PoP.my, A. O. & Th_erry,

J. C,) 136-144 (Oxford University Press, Oxforcl, '1991).
51. Jones. T_A., Zou, J. Y,, Cowan, S. & Kjelgaard, M. Acta ctystolk)gr, A47, 110-119 (1991).
5_. Sterling, C, Ac_a Crystat/o_r, 17, 1224-1228 (1964).
53. Kraul[s, P. J. J. a_ol. Crystatk_r. _bl, 946-950 (1991).

ACKNOWLEDGEMENTS. We thank K. D6rr for essistance In iSol_in_ alXI purif_ng the protein,

K. Downing for the use of the eiect_n cryomicroscoDe at the Lawrer_e Berkeley laboratory,
P. M_lf for advice on cfystatlo_'aDhic refinemonL H. Scheer and k Hoff fo_ dlscussion, and
T. Gillbro for communicating results before publication.

LETTERS TO NATURE

Detection of soft X.rays from
supernova 1993J six days
after outburst

H.-U. Z/mmermann*, W. Lewln_, P. Predehl*,

B. Aschenbach*, G. Fabblano:_, G. Hasinger*,

L Lubln§, E. Magnler_Jj, J. van ParadUsJJ,

R. Petre¶, W. Pietsch* & J. TrGnlper*

* Max-Planck-lnstitut f_r Extraterrestrische Physik, Postfach 1603,
D-85740 Garching, Germany

Massachusetts Institute of Technology, Center for Space Research,
Cambridge, Massachusetts 02139, USA

Harvard-Smithsonian Center for Astrophysics, Cambridge,
Massachusetts 02138, USA
§Princeton UnJversityObservatory, Princeton,
New Jersey 08544-1001, USA

Astronomical Institute 'Anton Pannekoek', University of Amsterdam
and Center for High-Energy Astrophysics, 1098 SJ Amsterdam,
The Netherlands
¶ Goddard Space Right Center, Greenbelt, Ma_and 20771, USA

O_ 28 March 1993, a new supernova was discovered t in the nearby "

galaxy M81. The proximity of the event (the distance 2 to M81 is
only 3.6 Mpc), and the fact that the supernova was detected at an
early stage of its outlmrs_, makes SNI993J an ideal candidate for
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the detailed study of the evolution of a supernova in all wavelength
regimes. We report here the detection of soft X-ray emissions from
SNI993J, six days after the initial discovery, and the subsequent
evolution of the X-ray light curve over the next 41 days. The
spectral characteristics of the emissions can he readily explained
if the X-rays originate in strong shock fronts produced by the rapid
expansion of the supernova ejecta into the slow, dense wind of a
red supergiant progenitor star'. The low intrinsic absorption of
the earliest emissions requires that any circumstellar material is

ionized, probably by the intense radiation of the initial outburst.
The decay of the X-ray luminosity with time should provide impor-
tant constraints on the density profiles of both the circumstellar
gas and the outermost layers of the supernova ejecta.

The mission programme of the X-ray observatory Rosat was

interrupted on 3 April 1993 for a target-of-opportunity observa-
tion of SNI993L Using the position sensitive proportional coun-

ter (PSPC) in the focal plane of the X-ray telescope, two
observations were made between 10.00 and 12.00 u'r for a total
of 2,706 s. Using former Einstein s and Rosat observations of
MS1 a new source amidst the known bright X-ray sources in
the field could be immediately identified with the supernova. The
detection, a first estimate ofthe source intensity, spectral analysis

results and the initial decrease of the X-ray intensity were

reported 6. Two days after the Rosat observation, Tanaka et aL _

reported the detection of X-rays from SN1993J with the
Japanese X-ray observatory ASCA. Additional Rosat PSPC
observations of the supernova followed throughout April until

6 May. In addition to the PSPC observations, two observations
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with the high resolution imager (HRI) detector of the Rosat
telescope were carried out. Table i summarizes the individual

observations with both detectors. The angular proximity
between M81 and the Sun prevented further monitoring of the
source beyond mid-May.

Figure 1 shows contour plots of the central region of MSI
before and after the supernova outburst. Figure ia originates
from a 20 x 103s observation taken with the Rosat PSPC in

September 1992 before the supernova explosion. In Fig. lb,
resulting from the combination of all PSPC pointings on
SNI993J (27.3 x 10 -_s), the supernova is clearly visible as a new

bright source southwest of the nucleus. By measuring the angular
distance of SNI993J relative to the known positions s of the

nucleus of M81 and of the nearby source, we could verify that

the X-ray and the optical 8 positions coincide within the 6-arcsec
accuracy of our approach. Because of the narrow point spread

function of the PSPC, the data of SN1993J are only slightly

contaminated (by at most 3%) by the nearby southeastern

source, which is of similar brightness (and spectral shape) as the

supernova. Thus a significant influence of that source on the
analysis of SNI993J is excluded.

Figure 2 shows the evolution of the count rate of SNI993J

over the whole observation period of 41 d. Two of the data
points (indicated by circles) have been derived from the HRI
data and scaled to the PSPC data according to the spectral

parameters discussed below (with PSPC rate equal to 2.76 times
the HRI rate). The horizontal bars of the data points indicate

the time span over which data have been averaged to obtain
comparable statistics on most points. An exponential decay fits

the data in Fig. 2 slightly better than a linear decrease. The
resulting (I/e) time is 86.2 d (+33.7, -19 d at 90% confidence).

For a spectral analysis of the data, each observation was

initially treated separately. Power law and thermal fits were
tested on each data set. No statistically significant change of the

spectral parameters with time could be established for either of
the two models. The data were then added to form a composite

spectrum with better statistics.
The fit of a power-law model to the mean spectrum (Fig. 3)

yields a photon index of !.0+0.25 (Z_=0.99; 13 degrees of

freedom, d.f.). The low energy cut-off of the spectrum is due

to photoelectric absorption in foreground diffuse matter, and

corresponds to a neutral hydrogen column density NH of
(5.9+0.7) x 10-'°cm -:. For a fit to a thermal bremsstrahlung

model the restricted energy range of the PSPC (0.1-2.4 keV)

does not allow kT (where k is the Boltzrnann constant and Tis

TABLE 1 Rosat observations of SN1993J

Days Observation
Detector (in 1993) time (s) rate counts s -a

PSPC 93.5 2,705 0.0790 ± 0.0055
PSPC 98.9 4,060 0.0734 ± 0.0043
PSPC 102.6 5,479 0.0609 ± 0.0034
PSPC 106.8 514 0.0614 ± 0.0121
HRI 109.2 13,210 0.0211 ± 0.0014
PSPC • 113.1 5,464 0.0554 ± 0.0032
PSPC 125.3 9,051 0.0535 ± 0.0025
HRI 134.2 8,044 0.0159±0.0016

Exposure times and uncorrected count rates (in the 0.1-2.4 keV
band) for Rosat bointings on SN1993J with the position sensitive pro-
portional counter (PSPC) and the high resolution imager (HRI) detectors,
Using the measured spectral parameters, the PSPC rate equals 2.76
times the HRI rate.

temperature) to be constrained at the high temperature side. We

find kT> 7 keV (or T> 80 × i06 K) at a l<r confidence level. The

corresponding Na column density is (5.9=t=1.1) x l0:°em -2

(2,,:,_ = 1.05; 13 d.f.). The galactic value of 4.3 x 10 -_ era-2 in the
direction towards MSI, determined from radio measurements 9,

shows that most of the absorbing material along the line of sighl
is located within our galaxy. Thus our measurement exclude.,
the existence of large amounts of X-ray absorbing material nea_
the source.

Assuming a distance 2 of 3.6 Mpc to M81 and the best-fit valm
for the power law model, the observed flux in the 0.1-2.4 key
band corresponds to an absorption corrected luminosity ot
(2.94+0.20) x I0 _9 erg s-I on 3 April, and of (1.64:*:0.17)x
1039 erg s-I in mid-May. Besides statistical uncertainties the lum-
inosity has an additional error of _25% due to the uncertainq
of the spectral parameters.

Models for early X-ray emission from SNI993J have to b_

tested against the present findings of the very high temperature:
in the emission region, the low intrinsic absorption, the fact tha
X-rays were detected 6 days after the explosion, as well as agains
the slow decay of the soft X-ray luminosity. A rather obviou:
explanation for the present observations is provided by model
where the interaction between the shock wave from the super
nova and the circumstellar material, originating from the dens
wind of a red supergiant progenitor star, heats matter to vet.
high temperatures 4. The soft X-ray luminosity requires big]
densities of the circumstellar matter, typical for the dense wind

FIG. 1 Contour plots from weakly smoothed
images of the central region of the galaxy M81.
a, A 20 x 103 s exposure taken with the position
sensitive proportional counter (PSPC) on the
Rosat satellite in September 1992. b, The same
region after the supernova explosion
(27.3 x 103 s PSPC data). The distance between
the M81 nucleus at the centre and the bright X-
.raysource at the lower rim is ~3 arcmin. The
contours begin at 3 standard deviations above
the background and go up in steps of a factor 2.
The PSPCpoint spread function for a supernova-
like spectrum has a haft-energy radius of
414 arcsec.

-8.0

-4.o

E
2

-2.0

0.0

2.0

o

o

0

o °_ °

J I [ i , I l t

-2.0 O.O

b o

o "t,._o ,_

o

I = I , _ = I | I I I

2.0 -a.0 0.0 2.0

Offset(arcmin)

NATURE • VOL 367 • 17 FEBRUARY 19,(



FIG.2 LightcurveofSN1993Jas measured withthe PSPCdetectoron
R0satin the 0.1-2.4 keVband.(The horizontalaxisgivesthe claysin
1993,) Thetwo data pointswith circlesrepresentthe highresolution
irnager(HRI)ratesthat havebeenscaledbya factorof 2.76 (usingthe
measuredspectralparameters)to comparablePSPCrates. The line
representsan exponentialdecayfit witha decaytime of 86.2 d.

of red supergiants, as confirmed by detailed hydrodynamical
calculations by Suzuki eta/) °. The initial spectrum of SN1993J
can be explained reasonably well by thermal bremsstrahlung
emission from the supernova ejecta heated by the reverse shock
to electron temperatures of the order of 3 x IOs K. But tlds model
predicts a much faster decrease of the soft X-ray luminosity than
observed, resulting in almost a factor of 2 difference at day 47
after the explosion. Tuning the circumstellar gas density profile
and the density distribution in the outermost layers of the ejecta
may help to overcome this discrepancy (K. Nomoto, personal
communication).

Before SN1993J, the only supernova event from which low-
energy X-rays had been seen was SN1980K in NGC6946, wldch
was detected 1] at 5 standard deviations above background with
the Einstein observatory 35 days after maximum optical light;

" l]
32 days later, the source was no longer visible. Canlzares et aL
estimated a luminosity of 2 x l 039erg s -I (0.2-4 keV) during the
first observation, remarkably close to the luminosity we find for
SN1993J.

In marked contrast to SNI980K and $N1993J, only hard X-
rays]2.(from the radioactive decay of Ni s6) but no early soft X-
rays]_ (<2.5 keV) were seen from SN1987A, which exploded in
the Large Magellanic Cloud, .-,70 times as close as Mal. The
progenitor star of SNI987A was identified as a blue supergiant,
an object class with typically thin and fast winds, which blow
out a low-density bubble around the star. Here the circumstellar
,_ind density is so low that the X-ray radiation from the shock
interaction stayed below the detection limit (1.5 x 1036erg s-_ at
a distance of 50 kpc) of the Aschenbach et al. I_ observation.
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FIG,3 Spectralfit ofa power-lawmodel of theformface-T to the PSPC
data of the supernova.Bestfit valuesare N,=(5.9±0.7)x 10=0cm-2
forthe(cold)gasabsorptionalongthe lineof sightand ),= 1.02 ± 0.25
forthe photonindex.
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Returning to SNI993.T we note that the low intrinsic absorp-
tion observed already on day 6 after the explosion requires that
the wind material of the red supergiant progenitor has been
efficiently ionized, for example by an initial ultraviolet or X-ray
flash ]4. The hydrogen column density in units of l0 z2cm -2 out-
side the shock front along the line of sight, assuming a 1/r 2
density distribution in the wind material, can be expressed as
NH.= = 13 x _f__/(vw,2ov,.4td) -I. With the time _ter the explo-
sion re=6 in days, the wind velocity v.jo = l in units of
20 km s -1, the shock velocity v,.4=3 in units of 104 km s-I and
mass loss rates A;/-5 of 0.6 to 7.7 in units of 10-5 solar masses
per year (required to achieve the observed luminosity, see also
Suzuki]°), we get NM,_ values of 0..5-6. If the wind matter was
neutral, soft X-rays would be completely absorbed by the outer
layers of the wind, in contradiction to the observation. In fact
the fits to the Rosat spectra show a 90% confidence upper limit
of 0.05 for NH.z2, which means that the wind is optically thin
against photoelectric absorption for photon energies >0.3 keV
at least. Furthermore, our observations are consistent with no
change of the absorption column density until the end of the
observation period with the PSPC detector, that is day 39 after
the outburst. This indicates that the degree of ionization, effec-
tive in the soft X-ray range, was essentially maintained.

After submission of this paper, SN1993J was re-observed by
Rosat on 1 and 2 November 1993 Is. Since the last observation

in May 1993, the PSPC count rate between 0.I and 2.4 keV
has decreased from 0.053 ± 0.0025 to 0.035 :t=0.0014 counts per
second. The energy spectrum has become significamly softer,
with kT _--'0.5keV for the fit to a thermal bremsstrahlung model.
The low-energy X-ray absorption, as derived from the fit, has
increased by a factor of ~5 compared to the May observa-
tion. []
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X-RAY PROPERTIES OF EARLY-TYPE GALAXIES

G. Fabbiano

Harvard-Smithsonian Center for Astrophysics

I. Outline

In this paper I will first review briefly the results of the X-ray observations of

early-type galaxies with the Einstein satellite, published in the past ten years (see

Fabbiano 1989 for a detailed review). I will then concentrate on more recent results

stemming from a systematic re-analysis of the Einstein galaxy database, and I will

also report on some very preliminary ROSAT results. Parts of this talk were given

at the COSPAR Symposium in Washir_gton DC in September 1992 and therefore
there is a considerable overlap between this paper and that in the proceedings of

the COSPAR meeting (Fabbiano 1992). Some of this material was also reviewed by

Fabbiano and Kim (1992).

II.Summary of 'old' Einstein Results

Normal galaxies have been studied in X-rays only recently. The Einstein

Observatory (Giacconi et al 1979) was the first X-ray experiment sensitive enough

to detect a large number of normal galaxies and to give us X-ray images and spectra
• ir

in the 0.2-4.0 keV energy range. These observations have shown that all galaxms are

X-ray sources with luminosities in the range of 1039 - 1043 ergs s -1 (see Fabbiano

1989 and references therein). There are however significant differences between spiral

and elliptical galaxies (for the purpose of this paper the word 'elliptical' is used to

include both E and SO galaxies, unless otherwise indicated). In spiral galaxies, X-ray

and optical luminosities are linearly correlated, and the X-ray luminosity typically

does not exceed a few 1041ergs s -1. Observations of nearby spirals, including the
Galaxy, show that the emission in the Einstein range is dominated by bright X-ray

sources (accretion binaries and supernova remnants). Bulge and disk X-ray emitting
populations can be distinguished, both with direct observations of nearby galaxies,

and because of sample differences in the properties of bulge-dominated and disk-

dominated spirals (e.g. Fabbiano, Gioia, and Trinchieri 1988). Other sources, such

as gaseous components associated with starburst activity, and small-scale AGN were
also detected in spirals (e.g. NGC 253, MS1).

Elliptical galaxies can be significantly more luminous in X-rays, reaching
,-, 1043 ergs s -1. There is both imaging and spectral evidence that these X-ray

luminous galaxies are dominated in X-rays by a soft (,,, 1 keV) gaseous component,

which has been suggested to be hot interstellar gas trapped in the gravitational field

of the galaxy (e.g. Forman et al 1979; Forman, Jones and Tucker 1985; Trinchieri

and Fabbiano 1985). The X-ray and optical luminosities of elliptical galaxies are
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CORONAL STELLAR EMISSION IN GALAXIES

G. FABBIANO

Harvard-Smithsonian Center.for Astrophysics

Abstract. The X-ray luminosity of galaxies is not dominated by their stellar coronal emission.
However, stars are there and their presence must account for a fi'action of the X-ray emission.
Stellar coronal emission in the Galaxy may explain the Galactic Ridge. In nearby spirals, a fraction
of the unresolved emission must be ascribed to stars. Even in more distant X-ray faint elliptical
galaxies, there may be evidence for stellar emission.

Key words: Galaxies - Galactic X-ray erai_ion

1. Ia_troduction

In the optical band, studying galaxies is also studying stars. This is not true in

X-rays, where the luminosity is dominated by different sources. In spiral galaxies

a population of hard-spectrum discrete X-ray sources dominates the emission in

the Einstein band -,,(0.2-4 keV). These are likely to be X-ray binaries and young
supernova remnants. A hot gaseous interstellar medium (ISM) ]nay be also present,

and has been convincingly detected in starburst galaxies. In X-ray-bright elliptical

galaxies the X-ray luminosity is dominated by the emission of a hot ISM. However,

emission from a population of low-mass binaries, similar to those in the bulge of

M31, may be the dominant source of X-rays in X-ray-faint ellipticals (see Fabbiano

1989 and references therein; Fabbiano, Kim and Trinchieri 1992; Kim, Fabbiano

and 'Dinchieri 1992a and b). r

What is the role of stellar coronal emission in the X-ray luminosity of galaxies?

Clearly it does not dominate the flux detected in the Einslein band: the X-ray

to optical luminosity ratio expected from a 'normal' stellar population in spiral

galaxies is smaller than the average measured value for the sample of galaxies

observed with Einstei, (see Fabbiano 1989). Moreover. the average X-ray spectrum
of spiral galaxies is harder (kT>3 keV; Kim, Fabbiano, and Trinchieri 1992) than

that expected from pure stellar emission for a measureable mix of stellar types

(see Vaiana 1990). In elliptical galaxies this contribution would be even harder to
discern.

However, the stellar contribution must be there at a certain level. As Pippo

Vaiana was fond of saying, if there are _ 10 H suns in a spiral galaxy emitting

102Sergs s -1 eacll, we have -_ 10a9 ergs s -l, which is not far off the observed remge

of X-ray luminosity of spirals (--, 10ag-4°Sergs s -I ).

In this talk I will review the evidence of stellar coronal emission in the Galaxy

and in nearby spiral galaxies; I will then discuss the UV and X-ray observations of

a starburst galaxy, where the X-ray emission of the young stellar population may
be very significant; I will conclude with some recent puzzling results on X-ray faint

elliptical galaxies that may suggest a detectable amount of stellar emission.

2. The Galaxy

Stars in the Galaxy could be detected in large numbers and studied with the Ebb-

stein Observatory (e.g. Linsky 1990; Vaiana 1990 and references therein}. Although

stars are individually faint X-ray sources, given to their large numbers they can be

267
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Normal galaxies and their X-ray
binary populations

G. Fabbiano
Haroard-Smithsonian Center for Astrophysics, 60 Garden Street,

Cambridge, MA 02138, USed

9.1 Introduction

X-ray binaries (XBs) are an important component of the X-ray emission

of galaxies. Therefore the knowledge gathered from the study of Galactic X-ray

sources can be used to interpret X-ray observations of external galaxies. Conversely,
observations of external galaxies can provide us with uniform samples of XBs, in a
variety of different environments.

Although detailed spectral/variability studies are at the moment only feasible for

Galactic X-ray sources and perhaps for X-ray sources in Local Group galaxies, the

study of sources in external galaxies presents unique advantages. These sources
within a given galaxy do not suffer from the uncertainty in distances that affects
Galactic binaries. Moreover, except for very edge-on galaxies, these sources are not

affected by large line-of-sight absorption, as are, for example, Galactic bulge sources.
Furthermore, in external galaxies it is easy to associate sources with different galactic
components (e.g. bulge, disk, spiral arms). Finally, different galaxies provide different
laboratories in which to test theories of Galactic source formation and evolution

with a variety of boundary conditions: different metallicity/stellar population, star-

formation activity, galaxy structure. All considered, the best place to study the overall

properties of Galactic sources is in external galaxies!
The study of galaxies in X-rays began with the Einstein Observatory (Giacconi et

al. 1979) and will be undoubtly greatly expanded with ROSAT (Triimper 1983). A
review of the Einstein results can be found in Fabbiano (1989); see also Fabbiano

(1990a, 1990b). Enlarged compilations of the Einstein data (images, fluxes and
spectra), including almost 500 galaxies, have been published recently (Fabbiano, Kim
and Trinchieri 1992; Kim, Fabbiano and Trinchieri 1992a). These observations have
shown that most of the X-ray emission of normal spiral galaxies (i.e. galaxies whose

X-ray emission is not dominated by a point-like non-thermal nuclear source) in the
Einstein band (,-- 0.2 - 4.0 keV) is due to the integrated contribution of galactic X-ray

sources. Three components of the X-ray emitting population have been identified:
bulge, disk and spiral arm sources. In starburst galaxies, a hot gaseous component is

also present. Elliptical galaxies can be much more luminous in X-rays than spirals
because they may retain a hot gaseous component, which dominates the X-ray
emission. However, a good fraction of the elliptical galaxies observed with Einstein
have relatively low X-ray luminosities. In these galaxies the X-ray emission may be

dominated by a population of low-mass XBs (LMXBs).

In this chapter, largely based on the Einstein observations, I will concentrate on
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X-RAY CONTINUUM AND IRON K EMISSION LINE FROM THE RADIO GALAXY 3C 390.3
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ABSTRACT

X-ray properties of the radio galaxy 3C 390.3 were investigated using the EXOSAT and Glnoa sateIllte_

Long-terra, large-amplitude X-ray intensity changes st,ere detected over a period extending from 1984 through
1991, and high-quality X-ray spectra were obtained especially with Ginga. The X-ray continuum spectra wexe
d_'/bed with powcr-hw model with photon slope in the ranl_ 1.5-I,8,and the slope tiailencd al the 2-20

keV luminosily decreased by 40%. There was a fast detection of the iron emission line from this source at the

90% confidence level An upper limi! was derived on the thermal X-ray compommt. X-ray emil_fioa mecha-
nisms and possible origins of the long-term variation are discussed.

Subject headlnos: galaxies: individual (3C 390.3) -- galaxies: active _ X-rays: galaxies

I. IN'i_ODUCTION

Radio galaxies occupy an important polition at a po_blc

parent population for quasar_ (QSOs) and BL La¢ objects

(Brown & Murphy 1987; Barthd 1989).In fact,certainmodels

(called "Unified Scheme"; see Orr & Brown 1982) claim thai a

group of radio gahxies that are seen nearly end-on to their
radio jeLs should become a highly relativistically besmed lumi-
nous class of active galactic nuclei (AGNs). In order to test the

Unified Scheme, it is important to beiter understand the X-ray
characteristics of radio galaxies and ¢_m_pare them with those

ofoth_ types of AGN, because X-ray emission is thought to be
directly related to the emislion mechanism of the central

engine of the AGN.
3C 390.3 is a broad-line radio galaxy at z = 0.05'7. In the

radio, it is classified as F-R II (lobes with leading edge hoi
spots; Fanaroff & Riley I974), and has a promimmt double-

lobed morphology, together with a compact nuclemt which
shows evidence of superluminal motion (Alef el aL 1988). The

optical spectrum, which classifies it as an N galaxy (Burbidge
& Burbidg¢ 1971 ; Peqasion & Pension 1973), shows broad H:_

and Hp lines whose double-peaked struciure provides evidence

spectra of powex-law form with photon index F - 1.65 (+0.50,

-0.25) in 2-50 key (error is 90% cxTltfidence level) and
F = 1.40 ±0.37 in 12-165 kcV (error is I a uncertainty)

(Rothschild e_ al, 1983; Mushotzky 1994), which are typical of
an AGN, and has a 2-10 keY iuminoslty ofLx - I0 "s's
s- _, A continuous decliue of3C 390.3has been observed over a

period of ~ 15 yr up to ~ 1984, h the optical blue ¢_ntinuum
(from 14,8to 16,6 mag; Barret aL 1980; Lloyd 1984; SWB85),
in the optical broad-tinccomponants (Oke 1986), in ultraviolet

tines (Clavd & Wamsteker 1987), and in X-rays (SW_$_
Here we rel_r_ on the X-rift observations of 3C 39_3 made

with the EXOSAT and Gin#a satellites, and present high-
quality X-ray spectra obtainccl with Ginea. In § 2 and § 3 we

describe our oblervations aBd resuha respe_vely, followed by
the discussion in§ 4.

2. OBSI_VATION$

2.t. EX OSA T Observaifor, s

A total of six £XOSAT observations of 3C 390.3 were per-
formed between 1984 and 1986. Data from the first two obser.

rations have already been reported (SWI_5); procemed data

for an acc_elion disk (Peiez et at. 1988). Since iti first X-ray from all six observ_ons ate publicly available in the
del_ion by Uhuru (Giacconi & Gutsky 1974; Forman et aL EXOSATdala_However.foraweakiourcelike3C3903,

1978),3C 390_3 has also been known to have an Xoray lumi- where the hard X-ray data are blckgroand-nolse domlnattd, ii
nosily as large as L_ - I0_ erga s -l. The galaxy has been
subsequently monitored in X-rays by several sa1_lliles, up to
Ihe most recent observations with EXOSAT (Sharer. Ward. &

Barr 1985, hereafter SWBISI, and the new results from Gi,_a
that we are presenting here The HEAO 1 data indicate X-ray

' Departmem o( Physka,Ualvcrfity of Tokyo. %3-t Hongo. Bunkyo-ku.
Tokyo. Japam i13.

z Departllt_i M Phyllk_ Tokyo M¢liopothan Unlvl_li[y, I.I Mialml-
Osawl, Hlchloil. Tokyo, hi:in 192-03.

i EXOSAT O_aiot-y. AlImphyllcll Divhlonl. _ Scleice Depm't-
meat. Es'rEc. NL-22flOAG i_oordwb't. _ bl©thedat_d*.

"Ik.pirlmenl of Earth lind _ _ Otah Uuivet'liiy, |-I
Maeh/kane-ym1_ Toyomaka. Otak'a. ,l_pan$60,

Dipirtim_io di Amo_omh, Uai_lilti di Bologna, Via Zimbmll 33.
40126aolOlll_ litb'.

• Oul_vstori_ AsU'_.qlcodl A_ccrri. LargoEnlio FIxnd $, _0125 F_

is often lx_ble to obtain ligalflcantly b_t_r reduced dim
than available in the lrddve by interactive reanalysb of the
raw data. Therefore, we have syitematically reanalyzed all data

from the Medium Energy proportional counter _ (ME;
Turner, Smith, & Zimmerman 1981) to obtain a uniform
sample of X-ray _e¢Ira.

Observationl were performed on 1984 day 153, day 259;

1985 day 33, day 311; and 1986 day 76, day 77. Both obsefva-
doris in 1994 were affected by solar activity;on day I53, 63

minules of data were not used due to bar, ground variations.
whik: on day 259 the ME dam _ completely unusable due

to solar flaring. We therefore exclude 1994 day 259 data from

the present analys_. The useful data on 1985 day 33 were
truncated by 3 hours dBe to spa_zrldt pointing problems.

Only 54 minutes of usd'ul data were obtained on 1915 day 311
due to bacl_round vanatiom.
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HIGH-RESOLUTION OPTICAL AND UV OBSERVATIONS OF THE CENTERS OF NGC 1316
AND NGC 3998 WITH THE HUBBLE SPAC£ TELESCOPE 1
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ABSTRACT

B and UV high-resolution images obtained with the HST FOC reveal centrally _ing surfa_ bright,
hess and UV-bright point sources at tim nuclei of the early-type galaxies NQC 1316 and NC._ 3998. Model
fitting of the surface brightness distn'bution does not exclude a c_ntr',d flattening, which could ho_-_r be the

result of extinction and/or of improper evaluation of the point-source component. The pre_nt data, while not

requiring the presen¢_ of _ntral massive black holes in these two galaxies, make them possible candidates,
Follow-up work is needed to study this point further. The presence of unr_olved nuclei gives model-
dependent support to this quest, if thc¢_ Iources are due to xmall AGN. _ OV-bright sources could
bdong to the low.luminosity end of active nuclear emission.

Subject headlnos: galaxies: actinic -- galaxies: individual (NGC 1316, NGC 3998) -- galaxies: nuclei w
uhraviol_: galaxies

I. INTRODUCTION

The study of the light distribution in the central regions of

elliptical galaxies can give us important du_ on their forma-
tion and growth, and on the presence of a large central mass
concentratior_ Th_ studies, however, have typically been

hzmpered by the effect of seeing (¢_g_ Schweiz_r t98t). HST.
even with its aberrated optics, gives us a direct way to inf=r the

distribution of light in the central regions of galaxies, down to
radii well below l'.

NGC 1316 and NGC 3998 ar_ two carly-_yp¢ galaxies (SOL

which exhibit nuclear activity. NGC 1316 is a nearby radio

galaxy (Forr_x A), with a core-jet-lobes structure (Gcldzahlcr
& Fomalont 1984). NGC 3998 hosts a compact radio source
(see Fabbiano, Gioia, & TrinchicH 1999). The central regions

of both 8_axies have low-ionlzation emission-line spectra
(Baum, Hcckman, & Van Breugel 1992.; Heckman, Balick, &
Crane 1980; Keel 1983). and there is evidence for circum-

nuclear emission-line disks (Ford e_ aL 1986; M. Frank 1993,

private communication; F. Bertola 1993, private com-
munication). NGC 3998 has also been studied in the IR as part
of a _m'aple of LINERs (Wi]lner et al. 1985): UV observations

with IUE (Reichert ¢tal. t992) suggest the preface of a
w ?nuclear point _ure¢, ith strong broad Mg II (2_00 A) cnlis-

sion. Both galaxies ha_z been observed in X-rays with E[nstein
(e.g.,Fabbiano, Kim, & Tfinchieri 1992; Kim, Fabbiano, &
Trinchieri 1992). The ~5" t_olution obsen,afion of NGC

1316 shows that the X-ray emi_ion is extended, and there is no

_'idence of a strong nuclear point source. The X-ray emission
ofNGC 3998 is unresolved; howev_', thisgalaxy was obs¢tv_

only at low spatial tamolution (_40q with £ir_ein. A study of
the optical surfacc brightne_ of the central regions of NGC

1316 (Schweizta" 1981) led In the detection of a small bright
core, and to the suggestion of a heavily absorbed nucleus.

t I_d on ob_mrvatio_ with t_e NASA,:EgA h'u/_h, Space Te/escope.

obu6r_l at the ._mme Teh:scope _ lmfitut¢, which it opentted by

The presence of nudcar radio sources in NGC 1316 and

NGC 3998 makes them likely candidates for hosting central
massiv_ black holes. Accretion onto massive black holes has

been invoked as the energy source of quasara and active galao-
tic nuclei (Rues 1984). Based on a correlation between the oore

radio luminosity of quatars and bright 3CR Salati_, and their

X-ray luminosity (Fabbiano et at. 1994). one can predict X-ray
luminosities for the active nuckL These estimates are below the

detected Einstein luminosities of these galaxies which are likely

to be dominated by an extended gaseous comporamt

(Fabbiano, Gioia, & Trinchicri 1989). Predklions on the X-ray
emission of an active nuck't_ can be turned into limits on the

mass of a central black hole, following Fabian & C_n_zares

0988). who consider accretion from the hot ISM as the fueling
mechanism for the nuclear black hole. For NGC 1316 and

NGC 3998 these limits suggest black hole masses between 104
and l0 s M o (see Fabbiano et al. 1989).

In this paper we report the results of high-resolution obser-
vations of NGC I316 and NGC 3998 with the lIST FOC in
the opdcal and UV. There were two motivations for these

observations: we wanted to find or m limits on the luminosity
of nuclear point sourc_ which oould b= the optieaI-UV
counterparts of the radio-¢miRing nucleus; and we wanted to

_t_dy the surface brightness distributions in the inner regions
of these galaxies to seek the dynamical signature of a central
mass concentration.

The presem_e of a large central masa ooncentration would
have visible e.ff¢cts on the radial distribut/o_ of both stellar

sudace brighm_;s and velocity dlspersion, which shouM be

increasing at smaller radii. Ahhough a number of dlipticab
can be fitted with King profi_ (e.g., King 1978), even before

space observations it was known that some galaxies presented
deviations from a flat-core King fftstribution in th_ inner
regions (so: Lau_ 1985). Direct evidence of massive black

holes has been sought with high-rmolution ob,_-rvatioos ofthe

inner regions of nearby galaxies both from the ground (e.g.,

::I 'Y2::
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AN X-RAY CATALOG AND ATLAS OF GALAXIES

G. FABBIANO,I D.-W. KIM) _G. TP,_cumPd _'2
Received 1991 May 20; accepted 1991 September 4

ABSTRACT

We present an X-ray catalog and atlas of galaxies observed with the Einstein Observatory imaging instruments
(IPC and HRI). The catalog comprises 493 galaxies, including targets of pointed observations, and RSA or RC2
galaxies serendipitously included in Einstein fields. A total of 450 of these galaxies were imaged well within the
instrumental fields, resulting in 238 detections and 212 3 ¢ upper fimits. The other galaxies were either at the edge
of the visiblefieldofview or confusedwithotherX-ray source_For thesewe alsogivea rough measure oftheir

X-ray emission.The atlasshows X-ray contourmaps ofdetectedgalaxiessuperposedon opticalphotographsand

gives azimuthally averaged surface brightness profiles of galaxies detected with high signal-to-noise ratio.

Subject headings: atlases m catalogs- Galaxy: structure- X-rays: galaxies

1. INTRODUCTION

The Einstein Observatory (Giacconi et al. 1979) has given us
for the first time the capability to study galaxies in the soft
X-ray band (0.2-3.5 keV). The focusing optics of the Einstein
mirror combined with the imaging capabilities and sensitivity
of its instruments has led to the detection of the X-ray emission
of normal galaxies at least as far as the Virgo Ouster and in
some cases has given us detailed information on the morphol-

ogy of the X-ray emission and on its spectral characterists.
These results suggest that the X-ray emission of normal spiral

galaxies in the Einstein band is dominated by the integrated
output of evolved stellar sources, such as supernova remnants
and close accreting binaries with a compact stellar remnant.
Bright E and SO galaxies are dominated by the emission of a
hot interstellar medium, and a similar gaseous emission is as-
sociated with starburst nuclei (see Fabbiano 1989 for a review).

Although many of the Einstein observations of galaxies have
been published, including the nearest best studied objects,
there are many observations in the Einstein data bank that
have never been published. These include both galaxies ob-
x-rved as the field target, and galaxies included serendipitously
in fields pointed at other astrophysical objects. Moreover,
dightly different analysis techniques have been used in differ-

ent papers, resulting in a certain nonuniformity of the reported
fluxes. For these reasons, we have undertaken a systematic
analysis of all the galaxies observed as part of the Einstein
mission with either the Imaging Proportional Counter (IPC) or
the High Resolution Imager (HRI). We have also searched for
X-ray emission from galaxies included in either A Revised
Shapley-Ames Catalog of Bright Galaxies (Sandage & Tam-
man 1981, hereafter RSA) or the Second Revised Catalog of
Bright Galaxies (de Vaucouleurs, de Vaucoulers, & Corwin
1976, hereafter RC2) that might have been included in the
Einstein field of view of observations of unrelated targets. This
zarch, combined with the target galaxies, has resulted in 493

' Harvard-Smithsonian Center for Astrophysics, 60 Garden Street,
Cambridge, MA 02138.

2PosIal addrese¢ Osservatorio Astrof_co di Arcetri, Largo Enrico
Fermi5, 1-50125 Firenze, Italy.

galaxies observed in X-rays with Einstein. By comparison,
only data relative to less than 200 galaxies have been previ-
ously reported (Fabbiano 1989 and references therein).

In this paper we report the selection criteria and observation
parameters (4 2), and we describe the data analysis techniques
(4 3). We give X-ray fluxes or upper limits for all these galaxies,
together with detailed analysis of separate components for
complex objects (4 4). For the detected galaxies, we present
X-ray surface brightness contours overlaid onto optical
images, and when appropriate we give X-ray surface brightness
profiles (4 5). We then discuss our results in comparison with
published work (4 6). In a companion paper (Kim, Fabbiano,

& Tdnchieri 1992a, hereafter Paper lI), we report the results of
a systematic spectral analysis of this sample. Average spectral
properties of different types of galaxies and their implications
for the emission mechanisms are discussed in Kim, Fabbiano,
& Trinchieri (1992b, hereafter Paper HI).

2. THE SAMPLE

The galaxies used for this work (see Table 1 of the catalog,
located after the text of this paper) include all the bright galax-
ies targets of Einstein observations, and all other galaxies in
RSA or RC2 serendipitously included in Einstein fields. Galax-
ies <>fall morphological types, normal galaxies,starburstgalax-
ies and mergers, and also galaxies with active nuclei (e.g., Sey-
felt galaxies) are included. In the latter, the X-ray emission is
typically dominated by a pointlike nuclear source. Galaxies at
the center of rich clusters (e.&, M87, NGC 1275), where the
X-ray emission is clearly dominated by the hot intracluster
medium (e.g., Fabdcant, Lecar, & Gorenstein 1980), are ex-
cluded from this catalog. Also excluded are NGC 4476 and
NGC 4478; these two galaxies are in a region of the sky which
is totally dominated in X-rays by the gaseous halo of M87.
Early-type galaxies in groups are, however, included, even if
the group potential could account for a larger gaseous halo and
brighter X-ray sources (e.g., Kriss, Ciofli, & Canizares 1983).
Galaxies in clusters are also included, when the X-ray emission
is clearly associated with the individual galaxy. In Table 1 we
do not list the Einstein observations of M31, M32, LMC, and
SMC, although their X-ray fluxes are included in Table 3.
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Abstract

This paper considers the possibility that "cooling flow' clusters are really 'heating flow' clusters in

which cold gas clouds evaporate in the hot intracluster medium. Total X-ray luminosity was calculated

as a function of the total evaporation rate. X-ray line emissivity for evaporating clouds was also

calculated using a nonequilibrium ionization code. The calculated X-ray luminosity and X-ray line

emissivity are approximately 1000 times smaller than for cooling clouds. Other comparisons were made

using measured line fluxes for M87 and Perseus cluster. Results indicate that evaporative heating flow

models require mass fluxes much greater than cooling flow models to explain the same X-ray emission.

This requirement exceeds any plausible mass source. These conclusions are very general and serve to

reject all heating flow models as viable alternatives to cooling flows.
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ABSTRACT

We have systematically investigated the X-ray spectra of normal galaxies, by using the Imaging Proportional
Counter (IPC) data in the Einstein data bank. In addition to the standard model fitting technique, we introduce

X-ray colors in order to extract spectral information from the fainter X-ray sources. We present spectral parame-
ters for 43 galaxies and X-ray colors for 127 galaxies.

Subject heading: X-rays: galaxies

1. INTRODUCTION

Since the launch of the Einstein satellite in 1978 (Giacconi
et at. 1979), X-ray observations have added important infor-
mation to our knowledge of normal galaxies (see Fabbiano
1989 for a review). Most of the work done so far, however, has
been concentrated on the analysis of imaging data. Spectral
parameters [i.e., hydrogen absorption column density and
emission temperature (or power-law index)] can be extracted
for sources observed with the Imaging Proportional Counter
(IPC), but have been published only for a limited number of
normal galaxies (for six elliptical galaxies, Trinchieri, Fab-
biano, & Canizares 1986; for 13 spiral galaxies, Fabbiano &
Trinchieri 1987; for the bulge of M31, Fabbiano, Trinchieri, &
Van Speybroeck 1987; for N1399, Killeen & Bicknell 1988; for
M33, Trinchieri, Fabbiano, & Peres 1988; for M81, Fabbiano
1988a; for MI01, Trinchieri, Fabbiano, & Romaine 1990; and
for the starburst galaxies NGC 253 and M82, Fabbiano
1988b). Forman, Jones & Tucker (1985) gave temperature

ranges for eight early-type galaxies, but not fitting Nn, for
which they assumed the Galactic line-of-sight value. An exten-
sive IPC spectral survey of Seyfert galaxies has been recently
published (Kruper, Urry, & Canizares 1990, hereafter KUC).
The X-ray emission of these galaxies is dominated by their
active nuclear source (AGN).

Spectral information is essential for a more concrete under-
standing of the nature of the X-ray sources and ofthe emission
mechanisms in galaxies. Because different types of galaxies are
likely to consist of different mixtures of X-ray emitting compo-
nents, which may have different spectral characteristics,
searching for differences in their spectral properties may help
us identifying the dominant component for a given class of
galaxies. We have performed a systematic spectral analysis of
all the galaxies in the catalog of Fabbiano, Kim, & Trinchieri
(I992, hereafter Paper I) and we present the results in this
paper. For galaxies detected with high signal-to-noise ratio we
present the results of a two-parameter X' fit of emission mod-
els to the data. However, most galaxies observed with the Ein-
stein Observatory IPC do not have enough counts for us to
apply this model fitting technique. To extract X-ray spectral

information from faint sources, we have introduced and cali-
brated two X-ray colors so that two important parameters---
emission temperature (or power-law index) and hydrogen col-
umn density responsible for the low-energy cutoff---can be
determined. X-ray colo_ although with a different definition
from ours, have been used by Cordova et at. (1990) to find

very soft X-ray sources.
Galaxies from Paper I observed with the Einstein IPC are

included for this spectral study if detected with more than 30
net counts. Galaxies which have ambiguous sources (i.e., the
X-ray emission could be due to interlopers) or were partly
hidden by the detector supporting structure are excluded.
These galaxies are listed in Tables 3 and 6 of Paper I. We
describe the standard model fitting technique and present the
results in § 2. We descn'be the X-ray colors and present the
results in § 3. We include notes on individual galaxies in § 4. In
a forthcoming paper, we will discuss the average spectral prop-
erties of different types of galaxies and their implications on
the X-ray emission mechanisms (Kim, Fabbiano, & Trinchieri
1992, hereafter Paper Ill).

2. STANDARD MODEL FITTING

2.1. AnalTsis and Results

In the standard model fitting method [ for example, see Ein-
stein Revised User's Manual (Harris 1984, hereafter RUM)],
a two-parameter model (e.g., kTand ?Ca for a bremsstraldung
spectrum with low-energy cutoff; a and Na for a power-law

spectrum with low-energy cutoff) is convolved with the instru-
mental response of the Einstein IPC for a range of spectral
parameters, and then compared with the observed distribution
of counts in the IPC pulse height (PH) channels using the
minimum x 2 technique. We restricted our fits to PH channels
corresponding to energies in the range of --0.2 to _4 keV,
because the uncertainties in the calibration of the IPC beyond
either end is considerably larger (Harnden et al. 1984). We
also exclude the PH channel 1, regardless of its energy, because
the calibration of PH channel I is far more uncertain than that
of the other PH channel_ The exact energy range depends on
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ABSTRACT

We have systematicallyinvc_gatedtheX-rayspectraofnormal galaxies,by usingthe ImagingProportion-
a] Counter (IPC) data in the £b_'tein data base. We find that on the average the X-ray emission tempera_fe
of spirals is higher than that of elllpticats. Th_ is co_£_tent with our understanding that a_reting binaries ate
a major source of X-rays in spirals, while a hot interstellar medium (ISM) is present in ellipticalx The X-ray
spectra of Sa galaxi_ are intermediate hetwom those of ¢lllpticals and spirals, suggesting that these galaxi_
contain hot gaseous en_on as well as emission from accreting binarie¢ We confirm that the X-ray to opticaJ
ratio is an important indicator of the presence of a hot gaseous component in early-type galaxies. In partk-_
I_r we find that the emission temperature becomes higher with a recreating X-ray to optical ]uminv,ity ratio
in E and SO galaxies. This result is what we would expect if the emission of X-gay faint early-eype galaxies
con._sts of a large cvolved stellar component, while the gaseoua emission becomes dominant in X-ray brighter
galaxies. The group with the lowest Lx/L_ does not follow this trend. In these b,'aiaxi_ we find a very _fl
(kT ~ 0.2 keV) X-ray component, amounting to about haft the total X-ray ¢mL_Jon, in addition to the hard
X-ray component. Possible explanations for this component include the integrated emh_on of M start and a
relatively cool ISM. A _wry soft component is also found in _veral s#ral galaxies. This result may indicate
that some spirals contain hot gaseous components similar to those seen in NGC 253 and M82.
5ubj¢c.t head_'ng;: ga.laxies: elliptical and lenticular, cD -- galaxies: spiral --
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|. INTRODUCTION

Based on the results from the Einstein Ob.wrmrory (Giacconi
ctal. 1979), it is now known that normal galaxies of all mor-
phological types are _,ourees of X-ray emission with lumi-
nosities in the range of 10_'-I0 _ orgs s-_ (see Fabbiano 1989
for a review). The imaging data and the results of the spectral
fits of a relatively smell number of galaxles hsve mgSested that
different _oorces are respo_l¢ for the X-ray emiz_on in gal-
axies of different morphological types. While in spiral galaxies
acc_ting binaries ate a major sourec of X-ray emission {see
Fabian 1981; Helfand 1984: Fabbiano & Trinebieri 1985,
1987), in bright elliptical galaxies hot gaseous emixsion can he
the dominant source of X-rays (Forman, Jone_ & Tucker
1985; Trlnchieri & Fabbiano 1985; CanizaRs, Fabbiano, &
Trinchiexl 1987). Sup_nova remnants or masssive young stars
may dominate in blue _tarbu_g galaxk_ together with emis-
sion fromoutflowinggaseousplumesinsome cages (Fabbiano,
Fdgelson,& Zamorani 1952; Stewart et aL 19S2; Watson,
Stanger, & Grifl]ths 1984; Fabbiano & "I'rinchieri 1984; Fab-
biano 1988b; Fabbiano, Heckman, & Keel 1990).

The purpose of this paper is to study the a_¢ragc spectral
properties of rcxsonably _ samples of galaxies of different
types and to use the_e results to constrain the X.ray emission

chieri 1992), whose spectral paramete_ m_I/or X-ray colors
have been tabulated by Kim, Fabbiano, & Trinchieri (1992,
hereafter Paper Pr Most of the_ galaxies were not detected
withenough statistics to yieldmeaningfulspectral
wheu analy'zcd fingiy, To overcome this problem, we have
studied the d_n'bution of X-ray colors, and we have derived
and compared combined spectra for givca classes of galaxim.
The analysis methods are described and justified in § 2. The
sample sdcction i_ discussed in § 3.

Fbst. _: investigam the differences in the average X-ray
spectra of galaxies of different morphological types (_ 4). In
particular, we _xamine the avera_ :pectral proper_ of spiral
and elliptical galaxies,and we take a dos_ look at SO and Sa
galaxies, intermcdiate in disk-to-bulge ratio, to determine the
vdadve hnportance of stellag sources and hot gaseous ISM in
their X-ray c'mission.

Second, we addre_ the question whether E and SOgalaxies
with relatively faint X-ray emission retain a hot gaseom ISM
as do X-ray [umino_ elliptical galaxies (_ 5). If the sputa of
less iuminou_ eliipticais differ front those o(the bright galaxi_
thi_ may imply a global difference between the two snbsamples
inthe proc_sofformationand evolution. If early-type galaxies
with hot gaseoea components can be properly glected by their
X-ray spectra, they can then be us_ to further inv_i_,ate the


